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Time-Difference-of-Arrival (TDOA)-Based
Distributed Target Localization
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Abstract�Localization and tracking of a moving target
arises in many different contexts and is of particular inter-
est in the �eld of robotic networks. One important class of
localization schemes exploits the time-difference-of-arrival
(TDOA) of a signal emitted by the target and detected by
multiple sensors. In this article, we propose a fully dis-
tributed approach to TDOA-based localization and tracking
of a moving target in 3-D space by a group of mobile robots.
We utilize a networked extended Kalman �lter to estimate
the target�s location in a distributed manner, and guarantee
successful localization under �xed and time-varying undi-
rected communication topologies if every agent is part of
a network with a minimum of four connected, noncoplanar
agents. Since localization performance under TDOA-based
schemes degrades as the target moves away from the con-
vex hull formed by the agents, it is important for the network
to track the target as it moves in space. We thus further
propose a movement control strategy based on the norm of
the estimation covariance matrices, with a tuning parame-
ter to balance the tradeoff between estimation performance
and the total distance traveled by the robots. A numerical
example involving robots with simpli�ed 3-D dynamics is
provided to illustrate the performance of the proposed ap-
proach.

Index Terms�Distributed localization, networked ex-
tended Kalman �lter, robotic networks, structural observ-
ability, time-difference-of-arrival (TDOA).

I. INTRODUCTION

OVER the past two decades, wireless sensor networks
(WSNs), often enabled by mobile robots, have received

increasing attention due to their potential application to a number
of diverse areas [1], such as environmental monitoring, space
exploration, military applications, target tracking, and health
care. Time-difference-of-arrival (TDOA)-based algorithms are
widely used for precise localization of a target, examples of
which include wireless ranging radar systems, cellular position-
ing systems [2], and acoustic telemetry in fishery research [3].
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This article considers the problem of TDOA-based localization
and tracking of a moving target with a robotic network in a
distributed manner. We propose a networked extended Kalman
filter, and derive the conditions for successful localization under
fixed and time-varying communication topologies.

A. Related Work

Generally speaking, TDOA algorithms rely on a target emit-
ting a signal periodically, which is detected by special receivers
deployed either at fixed locations or on mobile robots. If multiple
receivers detect the same signal, it is possible to infer the target’s
location using the differences among detection times at these
receivers.

Much of the work on TDOA-based localization in the litera-
ture adopts a centralized approach, in which a reference node is
chosen and the times of arrival (TOA) of the emitted signal for
all other nodes in the network are subtracted from the reference
node’s TOA, generating TDOA measurements at fusion hub. If
the propagation speed of the signal is known, the TDOA mea-
surements can be converted to range-difference measurements,
which are then used to estimate the location of the target [4], [5].
This centralized approach has a long history and is widely used
in aerospace systems [6]. Geometric treatment of the problem for
a stationary target was considered in [7] and [8], where the target
location is inferred from the geometric relations imposed by the
TDOA measurements. When the target‘s location changes with
time, dynamic approaches are generally used for localization, in
which a filter is used to estimate the target’s location. Examples
of these methods include utilizing an extended Kalman filter
(EKF) in [9], or an unscented Kalman filter and particle filters
in [10].

Due to power and bandwidth constraints in WSNs or robotic
networks, centralized information processing is often infeasible,
particularly for a large-scale and unreliable networks. Moreover,
some sensors cannot transmit their measurements to the refer-
ence node due to their limited communication ranges. These
drawbacks motivated the investigation of distributed strategies
for TDOA-based localization. In [11], decentralized source lo-
calization in multihop networks was considered, where a con-
nected dominating set of nodes work as the network backbone
to collect the measurements, and a leader node of that set is
selected to estimate the target‘s location, essentially acting as
a centralized estimator of the target’s position. The need for a
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common reference node is alleviated in [12], where a network
of paired sensors is utilized while requiring all such pairs to be
able to communicate with one another. As we discuss later in
Section III, this decentralized approach can be improved upon
by exchanging estimate information between nodes, allowing for
successful estimation without requiring all agents in the network
to be connected.

In this work, structural observability is used to investigate
the network topology conditions for distributed localization of a
moving target. Structural analysis deals with system properties
that do not depend on the numerical values of the parameters,
but only on the underlying structure (zeros and nonzeros) of
the system matrices [13]–[15]. It turns out that if a structural
property holds for one possible choice of nonzero elements as
free parameters, it is true for almost all choices of nonzero
elements and, therefore, is called a generic property of the
system. Furthermore, it can be shown that those particular (non-
admissible) choices for which the generic property does not hold,
lie on some algebraic variety with zero Lebesgue measure [16].
While this work is similar to [14] and [17] in that it employs
structural analysis on the system matrices, there is a significant
difference. In particular, the results reported in [14] and [17] treat
all nonzero elements as free parameters, which in turn disguises
the importance of the number of TDOA measurements used in
this localization scheme. In Section III, we explicitly consider
the role played by using more TDOA measurements, and prove
that the system can be rendered generically observable when a
sufficient number of TDOA measurements are used.

B. Contributions

The main contribution of this article is the introduction of
a fully distributed solution to target localization under fixed
and time-varying undirected communication topologies. This
approach does not require a common reference node or data
fusion center, nor does it require each agent to be heavily
connected to estimate the target’s location on its own. Instead, we
show that every agent in the network can successfully localize
the target if it is part of a network that has a minimum of four
connected, noncoplanar agents.

The TDOA-based estimation performance relies on the rela-
tive positions between individual robots and the moving target.
As the target moves away from the convex hull formed by the
agents, estimation performance begins to degrade and it becomes
paramount to track the target as it moves through space. Rather
than continuously tracking the target, we further propose an
adaptive movement strategy, where the robotic network moves
only when the norm of the estimation covariance matrix exceeds
a certain limit, to balance the tradeoff between estimation per-
formance and distance traveled by the entire mobile network.

While preliminary versions of some results of this work
were presented at conferences [18]–[20], this article presents
an integrated framework of TDOA-based target localization
and tracking control for mobile robots and represents several
significant improvements over [18]–[20]. First, [18] was focused
on a particular distributed extended Kalman filtering-based esti-
mation scheme with TDOA, the convergence of which relies

on assumptions that are difficult to verify. In contrast, this
work treats a more general class of distributed estimators and
exploits structural observability to derive explicit convergence
conditions in terms of the network topology. Second, [19] dealt
with the formation-based target-tracking control in the 2-D
space, while in this article both localization and tracking control
(including the simulation results) are treated in the 3-D space.
Compared to [20], this work offers more integrative treatment
of the problem by incorporating target tracking, extension to
time-varying topologies, and presentation of more extensive
simulation results.

C. Organization of This Article

The remainder of this article is organized as follows. We first
present the target movement model and the TDOA measurement
model in Section II. In Section III, we discuss the problem
of distributed localization and derive the convergence condi-
tion in terms of network topology via structural observability
analysis. Section IV is focused on tracking control to balance
the estimation performance and traveled distance. We provide
a numerical simulation in Section V to illustrate these results.
Finally, Section VI concludes this article.

II. PROBLEM SETUP

We consider a moving target in the 3-D space with
p(t) = [px(t) py(t) pz(t)]� denoting its coordinates at time
t. The target moves randomly in space according to

�
ṗ(t)
p̈(t)

�

=

�
0 I3

0 0

� �
p(t)
ṗ(t)

�

+

�
0
I3

�

w(t) (1)

where I3 is the 3 × 3 identity matrix and w(t) � R3 is the pro-
cess noise, which is assumed to be zero-mean, white Gaussian
noise with covariance matrix Q.

The target emits a signal periodically that gets detected by a
group ofN robotic agents, or nodes, at different times depending
on each agent’s relative distance to the target. At each detection,
agent i records the signal’s TOA and acquires the TOAs of all
other agents that can communicate their information to agent i.
These agents form the set of neighbors of agent i, which is de-
noted asNi. Each agent then subtracts the TOAs of its neighbors
from its own TOA, generating a list of time-difference-of-arrival
(TDOA) measurements. Assuming that the propagation speed of
the signal is known, the measurements available for each agent
are given by

yi(kT ) = hi(kT ) + vi(kT ) (2)

where

hi(t) =

�

���

hi,1(t)
...

hi,|Ni|(t)

�

��	 (3)

with

hi,j(t) = �p(t) � pi(t)� � �p(t) � pi,j(t)�. (4)
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Here, T is the period at which the signal is emitted, vi(t) �
R|Ni| is the measurement noise, assumed to be zero-mean, white
Gaussian noise with covariance matrix Ri, pi(t) is the position
of agent i, and pi,j(t) is the position of the jth neighbor of
agent i.

Denoting the target’s state as x(t) = [p�(t) ṗ�(t)]�, and dis-
cretizing the model in (1) with sampling time T , with slight
abuse of notation, we can write the discrete-time model of the
target as

x(k + 1) = Ax(k) + Bw(k) (5)

where

A =

�

���������

1 0 0 T 0 0
0 1 0 0 T 0
0 0 1 0 0 T
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

�

��������	

, B =

�

���������

T 2

2 0 0
0 T 2

2 0
0 0 T 2

2
T 0 0
0 T 0
0 0 T

�

��������	

. (6)

The time-varying measurement matrixHi(k) can be obtained
from (2), where

Hi(k) =

�

���

�hi,1(k)
�px(k)

�hi,1(k)
�py(k)

�hi,1(k)
�pz(k) 0 0 0

...
...

...
...

...
...

�hi,|Ni |(k)
�px(k)

�hi,|Ni |(k)
�py(k)

�hi,|Ni |(k)
�pz(k) 0 0 0

�

��	

(7)

and
�hi,j(k)
�px(k)

=
px(k) � pxi (k)
�p(k) � pi(k)�

�
px(k) � pxi,j(k)
�p(k) � pi,j(k)�

(8)

�hi,j(k)
�py(k)

=
py(k) � pyi (k)
�p(k) � pi(k)�

�
py(k) � pyi,j(k)
�p(k) � pi,j(k)�

(9)

�hi,j(k)
�pz(k)

=
pz(k) � pzi (k)
�p(k) � pi(k)�

�
pz(k) � pzi,j(k)
�p(k) � pi,j(k)�

. (10)

III. DISTRIBUTED ESTIMATION

In this section, we look into the problem of distributed
localization of a moving target using TDOA measurements.
The goal is for every agent to estimate the target’s position
without requiring a central node to collect all measurements
and propagate an estimate to all agents in the network. To
that end, we first discuss a decentralized estimation scheme,
where structural observability analysis is conducted to derive the
minimum number of TDOA measurements required for an agent
to estimate the target state on its own. We will then discuss the
distributed estimation scheme where agents exchange estimate
information, and present the necessary and sufficient condition
in terms of network topology for achieving stable estimates.

A. Decentralized Estimation

In this approach, each agent runs its own filter using its
own TDOA measurements. Here, agents exchange only their
locations and TOA values to generate TDOA measurements

without exchanging any other pieces of information. Each node
implements an extended Kalman filter (EKF) to estimate the
target’s state

x̂i(k|k � 1) = Ax̂i(k � 1|k � 1) (11)

x̂i(k|k) = x̂i(k|k � 1)

+ Ki(k) [yi(k) � hi(x̂i(k|k � 1))] (12)

where x̂i(k|j) is the ith node’s estimate of the state at time k
after the jth measurement has been processed, and Ki(k) is its
filtering gain, which is computed according to

Ki(k) = Pi(k|k � 1)Hi(k)�

× [Hi(k)Pi(k|k � 1)Hi(k)� + Ri]
�1 (13)

and

Pi(k|k � 1) = APi(k � 1|k � 1)A� + BQB� (14)

Pi(k|k) = [I �Ki(k)Hi(k)]Pi(k|k � 1)

[I �Ki(k)Hi(k)]�

+ Ki(k)RiKi(k)� (15)

where Pi(k|j) is the ith agent’s error covariance matrix at time
k after the jth measurement has been processed.

It is well known (see [21] and [22]) that the estimation error
for agent i under this scheme, which propagates as follows

x̃i(k + 1) = A(I �Ki(k)Hi(k))x̃i(k) + �i(k) (16)

is stable if and only if the pair (A,Hi(k)) is observable, where
x̃i(k) � x(k) � x̂i(k|k) is the estimation error for agent i and
the vector �i(k) collects the terms independent of x̃i(k). In the
following, we will show that the pair (A,Hi(k)) is unobservable
when agent i has less than 3 TDOA measurements. To avoid
clutter, we will consider only agent 1 of the network, and drop
the i subscript from the following analysis.

As discussed earlier, if a structural property is true for one
admissible choice of nonzero elements, it is true for almost
all choices of nonzero elements. Additionally, it can be shown
that the choices of parameters for which the generic property
does not hold, lie on a hypersurface (see Definition 1) in the
free parameter space with zero Lebesgue measure [16]. Due
to the fixed structure of our system matrix A in (6) and the
time-varying measurement matrix H(k) in (7), it is beneficial to
utilize structural analysis when examining the observability of
our system. In the following, we employ a structural approach to
establish the minimum number of TDOA measurements needed
to render the process generically observable.

Definition 1: Let f = f(x1, . . . , xn) be a polynomial in the
n variables x1, . . . , xn with coefficients in R. Then the point
x̄ = (x̄1, . . . , x̄n) in Rn is called a zero of f if f(x̄1, . . . , x̄n) =
0. The set of zeros of f is called the locus of f . A subset V of Rn

is called a hypersurface in Rn if it is the locus of a nonconstant
polynomial.

First, we consider the case where agent 1 only has two neigh-
bors and, therefore, only two TDOA measurements as shown in
Fig. 1. The measurement matrix H(k), in this case, admits the
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Fig. 1. Network of 3 agents monitoring the target with agent 1 as the
reference node.

Fig. 2. Network of 4 agents monitoring the target with agent 1 as the
reference node.

following structure

H� =

�
�1 �2 �3 0 0 0
�4 �5 �6 0 0 0

�

. (17)

The system is said to be generically observable if the pair
(A,H�) is observable for almost all values of T, �1, . . . , �6. In
other words, the system is generically observable if and only if
the observability matrix O is full rank for almost all values of
T, �1, . . . , �6, where

O =


H �

� (H�A)� (H�A2)� • • • (H�A5)�
��
. (18)

It is well known that rank(O) < 6 if and only if all 6 × 6
minors of O are zero [16]. We can easily verify that all 6 × 6
minors of O in (18) are zero, regardless of the values of
T, �1, . . . , �6. This implies that the process in (5) with mea-
surement matrix (7) is unobservable when the node has two or
less TDOA measurements.1

Now we consider the case where agent 1 has three neighbors
and, therefore, three TDOA measurements as shown in Fig. 2.
The measurement matrixH(k), in this case, admits the following
structure:

H� =

�

��
�1 �2 �3 0 0 0
�4 �5 �6 0 0 0
�7 �8 �9 0 0 0

�

�	 . (19)

Checking all 6 × 6 minors ofO, we observe that some minors
of O are not identically zero and are all of the form

�T 3(�3 (�5�7 � �4�8) + �2 (�4�9 � �6�7)

+ �1 (�6�8 � �5�9))2 (20)

for some � � R. Therefore, we conclude that rank(O) = 6 for
almost all values ofT and �1, . . . , �9, and that the pair (A,H(k))
is generically observable if the agent has a minimum of three
TDOA measurements2. Furthermore, the set of values that ren-
der the pair unobservable is a hypersurface in the free parameter
space where the expression in (20) is zero. Interestingly, this
means that the process is generically observable except when:

1If the node has only one TDOA measurement, and therefore only one
neighbor, then there is only one 6 × 6 minor of O and it is det(O).

2If the node has more than three TDOA measurements, it can be verified that
rank(O) = 6 if rank(H�) � 3.

1) the sampling time used for discretization of the system in
(5) is 0; or

2) all of the points that satisfy

det

�

�

�

����

�1 �2 �3

�4 �5 �6

�7 �8 �9

�

���	

�

����
= 0,

i.e., when the three TDOA measurements are linearly
dependent, and the four agents are coplanar.

For all agents in the network to be able to estimate the target’s
position under this decentralized scheme, we would require
that all such pairs (A,H1(k)), (A,H2(k)),...,(A,HN (k)) to be
observable, i.e., we would require the pair (IN �A,DH) to be
observable, where � denotes the Kronecker product, and

DH(k) �

�

���

H1(k) 0
. . .

0 HN (k)

�

��	 . (21)

Let x̂(k|k) = [x̂1(k|k)� . . . x̂N (k|k)�]� denote the
network-wide estimate of the network-wide state x(k) =
[x(k)� . . . x(k)�]� = 1N � x(k), where 1N � RN is the
column vector whose entries are all 1. The dynamics of this
network-wide state can be derived as follows:

x(k + 1) = 1N � (Ax(k) + Bw(k))

= (IN �A) (1N � x(k))

+ (IN �B)(1N � w(k))

= (IN �A)x(k) + (IN �B)w(k) (22)

withw(k) � 1N � w(k) representing the network-wide process
noise. Denoting the ith agent’s estimation error by x̃i(k) �
x(k) � x̂i(k|k), and the network-wide estimation error x̃(k) �
[x̃1(k)� . . . x̃N (k)�]�, the dynamics of x̃(k) are given by

x̃(k + 1) = (IN �A) (I6 N �K(k)DH(k)) x̃(k)

+ �(k)
(23)

where K(k) is a block-diagonal matrix of the filter gains
K1(k) . . .KN (k), and the vector �(k) collects the terms in-
dependent of x̃(k). This network-wide estimation error can be
stabilized if the pair (IN �A,DH(k)) is generically observ-
able, where each agent needs to have a sufficient number of
neighbors to estimate the process using only its own TDOA
measurements.

Under this formulation, each agent can estimate the target’s
location when it has a minimum of three TDOA measurements,
corresponding to each agent having a minimum of three neigh-
bors. This decentralized approach requires each agent to be
heavily connected, such that the target system is observable
using each agent’s own measurements. Next, we discuss how the
number of required communication links can be reduced, and
argue that it is possible to estimate the target’s location without
the need for heavily connecting the agents.
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B. Distributed Estimation

Consider the dynamical system in (22), and noting that for
a stochastic matrix W � RN×N , W1N = 1N , we can rewrite
(22) as

x(k + 1) = 1N � (Ax(k) + Bw(k))

= W1N �Ax(k) + 1N �Bw(k)

= (W �A)x(k) + (IN �B)w(k). (24)

For this modified dynamical system in (24), a centralized
filter can be designed with estimation error dynamics that can
be expressed as

x̃(k + 1) = (W �A) (I6 N �Kc(k)DH(k)) x̃(k) + �(k)
(25)

where Kc(k) is the filter gain, which can stabilize the error
dynamics if the pair (W �A,DH(k)) is generically observable.
In the following, we will show that it is possible to obtain a
network-wide estimation error with dynamics similar to (25) by
averaging the estimates among neighboring agents.

Let W � RN×N be a stochastic matrix with entries wij > 0
if i = j or if agents i and j can exchange information; otherwise
wij = 0. We assume here that every agent has access to its own
information (i.e., wii > 0), and that the communication links
are bidirectional, namely, if agent j can send its information
to agent i, then the reverse is also true, wij , wji > 0. Every
agent in the network implements a filtering scheme similar to
the decentralized case, but followed by updating its estimate
by averaging the estimates from neighbors and itself. The filter
implemented by each agent in the network is then given by

x̂i(k|k � 1) = Ax̄i(k � 1) (26)

x̂i(k|k) = x̂i(k|k � 1)

+ Ki(k) [yi(k) � hi(x̂i(k|k � 1))] (27)

x̄i(k) =
N�

j=1

wij x̂j(k|k). (28)

Denoting x̂i(k|k � 1) by x̂i(k), and substituting (27) and (28)
into (26), we can express a one-step formulation of agent i’s
estimate can as

x̂i(k + 1) =
N�

j=1

wij [Ax̂j(k) .

+ AKj(k) (yj(k) � hj(x̂j(k)))] . (29)

The ith agent’s estimation error is then given by

x̃i(k + 1) =
N�

j=1

wij [A(I �Kj(k)Hj(k))x̃j(k) + �j(k)] .

(30)
Denoting the network-wide estimation error by x̃(k) �

[x̃1(k)� . . . x̃N (k)�]�, then

x̃(k + 1) = (W �A) (I6 N �K(k)DH(k)) x̃(k) + �(k)
(31)

which is similar to (25), except that here the gain matrix
K(k) is restricted to be block diagonal. As explained in [14],
computing such a constrained gain is possible via an iterative
cone-complementary optimization algorithm; see [23] and [24]
for details. In [25], the authors derived a suboptimal filtering gain
inspired by the Markovian jump linear system filtering problem,
where

Ki(k) = Pi(k|k � 1)Hi(k)�

× [Hi(k)Pi(k|k � 1)Hi(k)� + Ri]
�1 (32)

and

Pi(k|k � 1) = AP̄i(k � 1)A� + BQB� (33)

Pi(k|k) = [I6 �Ki(k)Hi(k)]Pi(k|k � 1)

× [I6 �Ki(k)Hi(k)]�

+ Ki(k)RiKi(k)� (34)

P̄i(k) =
N�

j=1

wijPj(k|k). (35)

Therefore, to ensure the convergence of the networked filter,
one has to ensure that the networked system is observable [14].
To that end, we investigate the conditions on the matrix W and,
therefore, the topology of the undirected communication graph
among agents, that would render the pair (W �A,DH) ob-
servable, and therefore ensure the convergence of the networked
filter. We first note the following property regarding the powers
of the matrix W from [26].

Lemma 1: Let [W l]ij denote the (i, j) element of the matrix
W l, where W is the stochastic matrix representing the commu-
nication topology with wii > 0. Then, [W l]ij > 0 if there is a
path between agents i and j of length less than or equal to l;
otherwise [W l]ij = 0.

The pair (W �A,DH) is observable if and only if rank(O) =
6 N . Here

O =

�

�������

DH(k)
DH(k)(W �A)
DH(k)(W �A)2

...
DH(k)(W �A)p

�

������	
=

�

�������

DH(k)
DH(k)(W �A)
DH(k)(W 2 �A2)

...
DH(k)(W p �Ap)

�

������	
(36)

where p = 6 N � 1. Equivalently, denoting Oi as the block
column representing agent i’s subsystem, we can write O =
[O1 . . . ON ]. From the structure of DH , it is easy to see that
rank(O) =

�N
i=1 rank(Oi).

We are now ready to present the main results in this article.
Theorem 1: For a network of agents with time-invariant and

undirected topology, the system under the proposed distributed
TDOA-based localization is observable if and only if every
agent is part of a (sub)network that has at least four connected,
noncoplanar agents.

Proof. Sufficiency: We consider the case where agent i is
part of a network that has only four connected agents, and note
that the following results can be easily extended to the cases
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Fig. 3. Four possible configurations for node 1 to be connected to the
network using the minimum number of edges.

where the network has more agents. Since it is always possible
to renumber the agents, we will only consider the subsystem
corresponding to agent 1, and write

O1 =

�

��

H1(k)
...�

W 23�
41 H4(k)A23

�

�	 . (37)

This agent can be connected to the network in four possible
ways that are shown in Fig. 3.3 For the ease of presentation, in the
following, we examine Case (d), where the agent has only one
neighbor, and show that rank(O1) = 6. The other three cases
are discussed in Appendix A.

�
Case (d): The structure of Hi(k) for i = 1, . . . , 4 is as

H1(�) = [�1 �2 �3 0 0 0]

H2(�) =

�
��1 ��2 ��3 0 0 0
�4 �5 �6 0 0 0

�

H3(�) =

�
��4 ��5 ��6 0 0 0
�7 �8 �9 0 0 0

�

H4(�) = [��7 � �8 � �9 0 0 0].

Recalling that

rank

�

�

�

���

C
...

CAn�1

�

��	

�

��� = rank

�

�

�

���

CAk

...
CAk+n�1

�

��	

�

���

it can be shown that the pair
�

�A,

�

��
H1(�)
H3(�)
H4(�)

�

�	

�

��

3The graphs shown in Fig. 3 represent the minimum number of links required
for each graph to be connected. It is possible to add more edges among agents
in these graphs and adding more links will only help in terms of observability.

is generically observable, implying that

rank

�

�

�

����������

H1(�)
H3(�)
H4(�)

...
H1(�)A6

H3(�)A6

H4(�)A6

�

���������	

�

����������

= 6

for almost all values of T and �. Additionally, rank(O1) = 6
for almost all values of T and �. Specifically, this generic
property holds for all values of T and �, except for when the
four agents are coplanar. Since it is always possible to renumber
the agents, then if every agent is connected to the network that
has a minimum of four connected, noncoplanar agents, then the
pair (W �A,DH(k)) is generically observable. The proof for
the other cases follows a similar approach, and is presented in
Appendix A.

Necessity: If an agent is disconnected, or is part of a network
that has less than four agents, then there are not enough pieces of
information to estimate the target’s position centrally, let alone
distributively, and the error dynamics in (25)—and therefore
(31)—cannot be stabilized. �

For a time-varying, undirected communication graph, The-
orem 1 can be extended to offer a scalable approach that is
somewhat robust to communication link dropout.

Corollary 1: For a time-varying undirected network, if every
agent remains part of a network that has a minimum of four
connected, noncoplanar agents then the networked system under
the proposed distributed estimation scheme is observable.

Proof: As the network connectivity changes, if every agent
remains part of a network that has a minimum of four connected,
noncoplanar agents, then it can be shown that rank(Oi) = 6
for every agent in the network. This, in turn, ensures that the
networked system is observable by Theorem 1. �

IV. TARGET TRACKING WITH COORDINATED ROBOTIC
NETWORK MOVEMENT

In this section we look into the second part of the problem.
We begin the discussion by investigating the agent formation
needed for optimum localization of the target.

A. Optimal Formation

For a network of N agents, there is a total number of N(N �
1)/2 possible agent pairs. Let I0 = {(i, j)|1 � j < i � N} de-
note the set of all agent pairs and I = {(i, j)|j < i, wij > 0}, a
subset of I0, represent the set of agent pairs used for estimation.
From the definition of wij , it is clear that I depends on the
communication topology among agents.

The Cramer–Rao bound (CRB) is a lower bound for the
covariance matrix of unbiased estimators and is given by
the inverse of the Fisher information matrix [27]. With y �
[y�1 . . . y�N ], the Fisher information matrix is given by

J = E
��

�
�p

ln f(y|p)
� �

�
�p

ln f(y|p)
���

(38)
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where f(y|p) is the probability density function (PDF) of y
given p and E[•] denotes the expectation on y. Note that the
measurement noise vi is assumed to be Gaussian with zero
mean. Assuming thatRi = �2

vI|Ni|, one arrives at a 3 × 3 Fisher
information matrix by Chan and Ho4 [28]

J =
1
�2
v
GG� (39)

where

G = [gij . . . ](i,j)�I (40)

gij = gi � gj (41)

gi =
p� pi
�p� pi�

. (42)

Clearly, gi is a unit-length vector pointing from agent i to the
target, and the matrix G depends on the target position, agents’
positions, and the set I of agent pairs used for localization.

Since the CRB is a square matrix, we seek a formation of
agents that minimizes of the trace of the CRB

tr(J�1) = �2
v tr

�
[GG�]�1�

(43)

which is a lower bound for the sum of variances of unbiased
estimators for all elements of the target’s position p. In order to
obtain the lowest possible CRB, and therefore a better perfor-
mance by the estimator, all agent pairs in the network need to be
considered, and I = I0, requiring a fully-connected network.
The necessary and sufficient conditions to achieve a minimum
CRB are presented in [27]. It is known that the optimum 2-D
formation is that of a uniform angular array where all agents
are equally distributed around a circle of radius R, for some
arbitrary R > 0, centered around the target [27]. Similarly, in
the 3-D case, the optimal configurations for a complete network
are the 3-D equivalent of uniform angular arrays, known as the
platonic solids.

Remark 1: The biggest drawback in achieving optimal
estimation is that it requires the complete connectivity of the
corresponding agent network. This requirement can be relaxed
if one is interested in suboptimal performance. We note that since
the performance depends on the shape of the formation, one can
search the shape space of the agent formation space to arrive
at topology-specific shapes that minimize (at least locally), the
associated CRB. In this work, we specify the formation to be
that of a platonic solid, even when the network is not completely
connected.

The goal of tracking the moving target by the network is
to ensure adequate localization using the distributed estimator.
However, it is not necessary to continuously move the robots
with the target. In order to balance the tradeoff between the
cumulative distance traveled and the estimation performance,
each agent can utilize the norm of the error covariance matrix,
�Pi�, and only apply the tracking control if the �Pi� > b for
some constant b > 0. Note that b is a design parameter a user
can set depending on the specific problem. In particular, this

4Here, the propapagation speed of the transmitted signal is normalized to one.

Fig. 4. Illustration of the simplified model of a propelled underwater
robot with steering control, with a view on the sagittal plane. The robot
has similar yaw control in the horizontal plane.

Fig. 5. Initial setup for simulation environment with a fixed communi-
cation topology. The big circle represents the moving target, while the
small circles (overlapping one another at the origin) represent the initial
estimates of the target’s location for each robot. The ellipsoids represent
the mobile robots, while the thin lines connecting them represent the
communication links.

Fig. 6. Fixed communication topology among a network of 8 agents. It
is clear that no agent in the network has a sufficient number of neighbors
(and therefore TDOA measurements) to estimate the process on its own.

parameter allows the user to mediate between two extreme cases,
1) minimizing energy and remaining stationary (b = �) and (2)
maximizing estimation performance by continuously tracking
the moving target (b = 0). While this switching control strategy
is not guaranteed to drive each agent to its corresponding desired
location, it can greatly reduce the total distance traveled by all
agents, as is illustrated in the following section.

In order to guarantee that all agents move together, or keep
still at the same time, we exploit the average-based consensus
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Fig. 7. Simulation results of the robots for the two extreme values of b under a fixed communication topology where (a) the robots are constantly
moving with target (b = 0), and (b) the robots are staying put (b = �).

Fig. 8. Comparison of the mean squared estimation error (MSEE) of for each agent in the network for different values of b under a fixed
communication topology. (a) b = 0. (b) b = 30. (c) b = 100. (d) b = �.

Authorized licensed use limited to: Michigan State University. Downloaded on April 03,2024 at 06:22:22 UTC from IEEE Xplore.  Restrictions apply. 










