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A B S T R A C T
The past decade has witnessed many great successes of machine learning (ML) and deep learning
(DL) applications in agricultural systems, including weed control, plant disease diagnosis, agricultural
robotics, and precision livestock management. Despite tremendous progresses, one downside of
such ML/DL models is that they generally rely on large-scale labeled datasets for training, and
the performance of such models is strongly influenced by the size and quality of available labeled
data samples. In addition, collecting, processing, and labeling such large-scale datasets is extremely
costly and time-consuming, partially due to the rising cost in human labor. Therefore, developing
label-efficient ML/DL methods for agricultural applications has received significant interests among
researchers and practitioners. In fact, there are more than 50 papers on developing and applying
deep-learning-based label-efficient techniques to address various agricultural problems since 2016,
which motivates the authors to provide a timely and comprehensive review of recent label-efficient
ML/DL methods in agricultural applications. To this end, we first develop a principled taxonomy
to organize these methods according to the degree of supervision, including weak supervision (i.e.,
active learning and semi-/weakly- supervised learning), and no supervision (i.e., un-/self- supervised
learning), supplemented by representative state-of-the-art label-efficient ML/DL methods. In addition,
a systematic review of various agricultural applications exploiting these label-efficient algorithms,
such as precision agriculture, plant phenotyping, and postharvest quality assessment, is presented.
Finally, we discuss the current problems and challenges, as well as future research directions. A well-
classified paper list that will be actively updated can be accessed at https://github.com/DongChen06/
Label-efficient-in-Agriculture.

1. Introduction
Smart farming (also referred to as smart agriculture)

(Walter et al., 2017; Wolfert et al., 2017; Moysiadis et al.,
2021) integrated with a range of recent information and
communication technologies (ICT), including unmanned
aerial/ground vehicles (UAVs/UGVs), image processing,
machine learning, big data, cloud computing, and wireless
sensor networks (WSNs), has emerged as a promising solu-
tion to boosting the agricultural outputs, increasing farming
efficiency as well as the quality of the final product (Walter
et al., 2017; Wolfert et al., 2017). With smart farming,
farmers can make informed planting, tending and harvesting
decisions with data collected from smart sensors and de-
vices. However, extracting relevant and useful information
from diverse data sources and especially imaging data, is
challenging. Traditional data mining techniques are often
unable to reveal meaningful insights from these complex
data (Wolfert et al., 2017).

Deep learning (DL (LeCun et al., 2015)), on the other
hand, has shown great capabilities in processing complex,
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high-dimensional data with numerous successful applica-
tions (He et al., 2016, 2017; Dosovitskiy et al., 2020). In par-
ticular, DL methods have demonstrated remarkable feature
extraction and pattern classification capabilities, learning
high-quality image representations and achieving promising
performance in various agricultural applications (Kamilaris
and Prenafeta-Boldú, 2018), including weed control (Chen
et al., 2022a), plant disease detection (Xu et al., 2021; Fan
et al., 2022), postharvest quality assessment (Zhou et al.,
2022), and robotic fruit harvesting (Chu et al., 2021; Zhang
et al., 2022a; Chu et al., 2023), among others. In spite
of the promising progress, the aforementioned approaches
are mainly based on supervised training that is universally
acknowledged as data-hungry, and the performance of such
supervised methods is highly dependent on large scale and
high quality labeled datasets (Sun et al., 2017). For exam-
ple, in computer vision tasks such as object detection and
semantic segmentation, the models are generally pre-trained
on large-scale image datasets in a supervised fashion with
large volumes of labeled images, such as ImageNet (Deng
et al., 2009), Microsoft COCO (Lin et al., 2014), and Plant-
CLEF2022 (Goëau et al., 2022). However, the collection and
annotation of such datasets are extremely time-consuming,
resource-intensive, and expensive. It is highly desirable to
avoid repeating this for new applications in farming.

To mitigate the costly and tedious process in data an-
notation, there has been an emerging ML field that focuses
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on developing weak supervision (Zhou, 2018; Van Engelen
and Hoos, 2020) or even no supervision (Jing and Tian,
2020) approaches to learn feature representation from large-
scale unlabeled data. Specifically, in weak supervision, a
set of unlabeled data samples or data samples with coarse
labels, which are cheap and easier to obtain, along with
small portions of labeled samples are jointly employed to
train the ML/DL models (Zhou, 2018; Van Engelen and
Hoos, 2020). In unsupervised approaches, the models are
trained with large-scale unlabeled data without requiring any
human-annotated labels (Min et al., 2018; Jing and Tian,
2020). The goal of this review paper is thus to survey such
label-efficient learning methods (Shen et al., 2022), along
with their applications to agricultural systems, with a focus
on DL techniques.

To date, several surveys of label-efficient learning ap-
proaches have been published (Zhou, 2018; Van Engelen and
Hoos, 2020; Min et al., 2018; Jing and Tian, 2020). In Zhou
(2018), the authors reviewed some advancements of weakly
supervised learning, in which three types of approaches with
weak supervision were introduced: incomplete supervision,
inexact supervision, and accurate supervision. In Jing and
Tian (2020), the authors focused on self-supervised learning
methods for general visual feature learning (i.e., inputs to
networks are images or videos). However, these surveys
introduce approaches in a relatively isolated way. There are
also a few survey papers that focus on a specific aspect/task
of these label-efficient approaches (Schmarje et al., 2021;
Shen et al., 2022). For instance, a review of semi-, self-,
and unsupervised learning for image classification tasks was
presented in (Schmarje et al., 2021), in which 34 common
methods are implemented and compared. In Shen et al.
(2022), semi-supervised and weakly-supervised learning ap-
proaches for image segmentation tasks, including semantic
segmentation, instance segmentation, and panoptic segmen-
tation, were reviewed. Therefore, a review on label-efficient
learning with comprehensive coverage of the methodology
and the corresponding tasks is still lacking.

Furthermore, despite the rapid growth in smart agri-
culture, review papers on label-efficient learning for agri-
cultural applications have been scarce. In a conference pa-
per (Fatima and Mahmood, 2021), the authors reviewed
recent advanced semi-supervised learning algorithms (from
6 conference papers and 6 journal papers) for smart agri-
culture. However, they only reviewed the semi-supervised
approaches, while the recent advances in other label-efficient
learning areas, such as weakly- and unsupervised learn-
ing, are lacking. Recently, Yan and Wang (2022) reviewed
the unsupervised and semi-supervised learning approaches
for plant system biology. Compared to the aforementioned
review papers, our work differs in the following aspects.
Firstly, Yan and Wang (2022) mainly focused on the appli-
cations of plant system biology, while we present a broader
range of agricultural applications, including precision agri-
culture, plant phenotyping, and postharvest quality assess-
ment. Secondly, in (Yan and Wang, 2022), the surveyed
papers were mostly related to analyzing plant omics data

(i.e., genome, metabolome, phenome, proteome, and tran-
scriptome), so the techniques of self-supervised learning
and semi-supervised learning approaches were mostly con-
ventional machine learning approaches developed for low-
dimensional data, while we focused more on image feature
learning (i.e., inputs are high-dimensional RGB images)
based on advanced deep neural networks (Simonyan and
Zisserman, 2014; He et al., 2016). Lastly, we develop a
principled taxonomy to organize these methods according to
the degree of supervision, including weak supervision (i.e.,
active and semi-/weakly- supervised learning), and no su-
pervision (i.e., un/self- supervised learning). Given the rapid
development in label-efficient learning, our work attempts
to comprehensively review the state-of-the-art algorithms
with focuses on agricultural applications, covering the most
prominent and relevant works in a principled fashion.

In this survey, we first propose a new taxonomy of
label-efficient algorithms to organize different conceptual
and methodological approaches according to the degree of
required supervision. In addition, we summarize the most
representative methods along with the developed and pub-
licly available packages/tools. Furthermore, we review re-
cent advances in weak and no supervision learning and
their applications in agriculture, including precision agri-
culture, plant phenotyping, and postharvest management.
Last but not least, we discuss the remaining challenges and
potential future directions. This review will be beneficial for
researchers who are new to this field as well as for those who
have a solid understanding of the main approaches but want
to work on innovative applications in the agricultural space.

2. Methods
In this survey, the conventional PRISMA (Preferred

Reporting Items for Systematic Reviews and Meta-Analysis)
method (Moher et al., 2009) is used to thoroughly and
systematically collect related literature, by exploiting the
recommended methods for literature collection, as well as
the inclusion and exclusion criteria (Moher et al., 2009; Lu
et al., 2022). Specifically, the databases for the literature
collection are chosen to ensure the comprehensiveness of
the review. Firstly, major scientific databases (e.g., Web of
Science, ScienceDirect, Springer, and Elsevier) are selected
for searching related topics. Secondly, various mainstream
scientific article search engines and databases, including
Google Scholar, IEEE Xplore, and the open-access paper
platform ArXiv1, are utilized to expand the search coverage
and collect more recent literature, which is crucial for identi-
fying emerging label-efficient ML/DL approaches and their
agricultural applications.

Once the databases for the literature collection are de-
termined, an inclusion criterion is applied to the article
search in the identified databases and search engines. Specif-
ically, keyword search is first conducted for a preliminary
article collection, using a combination of two groups of
words as keywords. The first group of words is selected in

1Arxiv: https://arxiv.org/
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Google Scholar  

(N =159)

ArXiv

(N = 44)

IEEE Xplore 

(N=49)

Records after duplicate removed

(N = 102)

Full-text articles assessed for eligibility

(N = 89)

Studies included in qualitative synthesis 

(N = 52)

Records Excluded by Title

(N = 13)

General scope for database search: Label-efficient learning in agriculture (precision/production

agriculture, plant phenotyping, and postharvest quality assessment of agricultural products)

Timespan: 2016 - 2023

Date of assessing: September/08/2022 and March/31/2023

ScienceDirect

(N = 75)

Figure 1: The PRISMA guideline flowchart used in this review. The figure first row illustrates initially selected articles based on
the keywords that enhanced the initial filtering before other exclusion criteria are applied.

the label-efficient learning field, such as “active learning”,
“semi-supervised learning”, “weakly-supervised learning”,
“self-supervised learning”, “unsupervised learning”, “label-
free”, and “label-efficient learning”. The second group of
words is selected in the agricultural field, such as “agricul-
tural applications”, “precision agriculture”, “weed”, “fruit”,
“aquaculture”, “plant phenotyping” and “postharvest quality
assessment”. Keyword operators, such as “AND” and “OR”
are also used in the process to improve the efficiency and
diversity of the keyword search. Furthermore, references and
citations of the selected articles from the keyword search are
also included to expand the initial inclusion stage.

To select the most relevant literature for the review paper,
several exclusion criteria are then used to filter the articles
obtained from the preliminary collection. The first exclusion
criterion is the publication date. We mainly focus on arti-
cles published in the last eight years (2016-2023) because
label-efficient learning based on deep learning techniques
in agriculture is relatively recent and related technologies
are evolving rapidly. For older publications, we still in-
clude those with high citation indexes, considering their
significant impact on others’ work. The second exclusion
criterion is the type of papers in the preliminary collec-
tion. We mainly focus on research articles in highly ranked
journals and filter out other types of papers, such as re-
ports and meeting abstracts due to generally lower technical
contribution and completeness. We also remove repeated
literature resulting from searches in multiple databases and
search engines. After literature collection and screening,
we finally obtain 52 research articles (see Fig. 1 for the
process) for label-efficient learning in the agriculture do-
main, which have been listed and will be actively updated
on our GitHub repository: https://github.com/DongChen06/

Label-efficient-in-Agriculture.
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Figure 2: Numbers of publications over the years.

The literature collections are then organized based on
publication time to show the overall popularity trends of
label-efficient learning in agriculture based on DL tech-
niques. Fig. 2 shows the number of collected articles in
different years within the time scope we focus on. It is
observed that the topic of label-efficient learning has gained
increasing attention in agricultural research from 2016 to the
present (March 2023), demonstrating the significance and
necessity of this review to cover the most prominent and
relevant work.

3. Taxonomy of Label-Efficient Learning
Methods
In this section, we will introduce the most representative

label-efficient learning algorithms used in general computer
vision (CV) tasks. As shown in Fig. 3, the proposed taxon-
omy encompasses two main categories: weak supervision
and no supervision, each consisting of multiple sub-areas
(green boxes in Fig. 3).

The training objective function for algorithms under
weak supervision or no supervision can be represented as
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Label-efficient Learning

Weak Supervision No Supervision

Active Learning
Semi-supervised 

Learning

Weakly supervised 

Learning

Unsupervised 

Learning

Self-supervised 

Learning

Pool-based active 

learning

Stream-based 

active learning

Inductive 

methods

Transductive

methods

Multi-instance 

learning

Class activation 

mapping

Generative  

methods

Contrastive 

methods

Adversarial 

methods

Traditional 

clustering

DL-based 

clustering

Figure 3: A comprehensive taxonomy of representative label-efficient learning techniques. Our taxonomy encompasses two primary
categories (shown in blue boxes), each consisting of multiple sub-areas (shown in green boxes).

the following unified function:
min
𝜃

𝜆𝑙 ⋅
∑

(𝐱,𝑦)∈𝐿

𝑠𝑢𝑝(𝐱, 𝑦, 𝜃)+𝜆𝑢 ⋅
∑

𝐱∈𝑈

𝑢𝑛𝑠𝑢𝑝(𝐱, 𝜃), (1)

where the ML/DL model weights 𝜃 is optimized. 𝐿 and
𝑈 represent the (weakly) labeled and unlabeled datasets,
respectively. The input data and the corresponding (weak)
labels are represented by 𝐱 and 𝑦. The weight coefficients
for labeled and unlabeled data are denoted by 𝜆𝑙 and 𝜆𝑢,respectively. When there is no supervision, 𝜆𝑙 is set to zero,
indicating that only unlabeled data is used in the training
process. However, in algorithms under weak supervision,
both (weakly) labeled and unlabeled data sets are utilized
to facilitate representation learning. For instance, in semi-
supervised self-training (Lee et al., 2013) (Section 3.1.2),
ML/DL models are trained on joint samples with human-
annotated labels and pseudo-labels generated from unla-
beled data.
3.1. Weak Supervision

Weak supervision refers to machine learning methods
that utilize both labeled and unlabeled samples, where the
labels may be incomplete or inaccurate or the unlabeled
samples may be large in quantity (Zhou et al., 2018). These
methods can be divided into three subcategories: active
learning, semi-supervised learning, and weakly supervised
learning. Specifically, active learning involves an iterative
process of selecting the most informative data points for
annotation to maximize model performance while minimiz-
ing the cost of human labeling. In semi-supervised learn-
ing, both labeled and unlabeled data are utilized for model
training, with the goal of improving performance beyond
what is achievable with only labeled data. Finally, weakly
supervised learning involves training models with imperfect
or incomplete labels, which can be easier and cheaper to

obtain as compared fully annotated data. We next review
more details about these methods.
3.1.1. Active learning

Active learning (Settles, 2009; Ren et al., 2021b) aims
to achieve maximum performance gains with minimum an-
notation effort. With a large pool of unlabeled samples,
active learning selects the most informative samples and
then requests labels from an “oracle” (typically a human
annotator) to minimize the labeling cost. As shown in Fig. 4,
active learning can be further categorized into two types:
stream-based active learning and pool-based active learning.

In the stream-based methods (Fig. 4 (a)), one instance
(i.e., sample) is selected at a time for the query sequentially
from the input data source, and the ML/DL model needs to
make a decision whether to query or discard it individually.
This approach is extremely useful for resource-intensive
scenarios, such as training and inference on mobile and
embedded devices. On the other hand, pool-based active
learning (Fig. 4 (b)) ranks and selects the best query from
the entire unlabeled set (Settles, 2009), which is exploited
in most real-world applications where large amounts of
unlabeled samples can be accessible and processed at once.
Unless specifically noted, the subsequent discussions will
focus on the pool-based methods.

In pool-based active learning, 𝐷𝐿 = {𝑋, 𝑌 } is defined
as the labeled dataset with 𝑚 samples, where x ∈ 𝑋 and
y ∈ 𝑌 represent the samples and their labels, respectively.
𝐷𝑈 = { ,} is the unlabeled dataset with 𝑛 samples, where
𝑥 ∈  and 𝑦 ∈  denote the sample space and label space.
In active learning settings (𝑚 ≪ 𝑛), the goal is to design a
query strategy 𝑄 ∶ 𝐷𝑈 → 𝐷𝐿 to keep 𝑚 as small as possible
while ensuring a pre-defined accuracy (Settles, 2009). The
queried samples will be manual-labeled by a human expert
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ML/DL 
model Observe an 

instance
𝓛

Label & add

𝑥, ?

Oracle
Decide to query 

or discard

𝑥, 𝑦
𝝁

(a) Stream-based active learning

ML/DL 
model

Select the 
best instance 

in the pool

𝓛

Label & add

𝑥, ?

Oracle

𝑥, 𝑦

Query 

𝝁

(b) Pool-based active learning

Figure 4: Diagrams of the active learning algorithms: stream-
based selective sampling and pool-based sampling active learn-
ing.  and 𝜇 represent the labeled and unlabeled datasets,
respectively.

with labels 𝑦 ∈  . The training objective is defined as:
𝑚 = argmin

(𝑥,𝑦)∈𝐷𝑈 ,(x,y)∈𝐷𝐿

𝐿𝑠𝑢𝑝(𝑓 (x), y) +𝐿𝑠𝑢𝑝(𝑓 (𝑥), 𝑦), (2)

where 𝑓 ∶ 𝑋 → 𝑌 or  →  is the learned model, such
as a deep learning model. 𝐿(⋅) denotes the loss function.
Therefore, the query strategy 𝑄 in active learning is crucial
to reduce labeling costs. Following the literature (Settles,
2009), we classify active learning into three categories based
on the common query strategies: uncertainty-based active
learning, Bayesian learning-based active learning, and au-
tomated active learning.

Uncertainty-based active learning. Uncertainty sam-
pling is the most common and widely used query strategy. In
this framework (see Fig. 5), the instances with the most un-
certainty are selected and queried. Confidence level, margin,
and entropy are the three most common methods to measure
the uncertainty of a sample. For instance, the least certain
samples with the smallest predicted probability are chosen
and labeled by an expert in (Lewis and Catlett, 1994). In
Scheffer et al. (2001), the active learner selects the top-K
samples with the smallest margin  (i.e., most uncertain),
where the margin  = 𝑃 (𝑦1|𝑥) − 𝑃 (𝑦2|𝑥) is defined as the
difference between the highest predicted probability and the
second highest predicted probability of a sample using the
trained model. In Settles (2009), information entropy is ap-
plied as the uncertainty measure. For a 𝑘-class classification

task, the information entropy  is defined as:

(𝑥) = −
𝑘
∑

𝑖=1
𝑃 (𝑦𝑖|𝑥) log(𝑃 (𝑦𝑖|𝑥)), (3)

where 𝑃 (𝑦𝑖|𝑥) denotes the predicted probability for sample
𝑥. The top-K samples with the largest entropy are selected
and queried. For more uncertainty-based active learning
methods, readers are referred to (Settles, 2009; Aggarwal
et al., 2014).

CNN

High confidence samples

Highly uncertain samples Oracle Labeled set

Unlabeled set

Model 
updating

Uncertainty-based active learning

Figure 5: The framework of the uncertainty-based query
strategy.

Bayesian learning-based active learning. In Houlsby
et al. (2011), Bayesian active learning by disagreement
(BALD) was proposed to select samples that maximize the
mutual information between model parameters and model
predictions. The higher the mutual information value, the
higher the uncertainty of the sample. In Gal et al. (2017), the
authors extended BALD to the deep Bayesian active learn-
ing (DBAL) that combines Bayesian convolutional neural
networks (Gal and Ghahramani, 2015) and active learning
framework to process high-dimensional image data. Eval-
uated on MNIST (Deng, 2012) dataset, DBAL achieved 5%
test error with only 295 labeled samples and 1.64% test error
with an extra 705 labeled images, outperforming random
sampling approach with 5% test error using 835 labeled
samples.

Automated active learning. The design of previously
mentioned active learning algorithms often requires substan-
tial research experience, which hinders the adoption from
users without adequate technical understanding. Therefore,
it is beneficial to contemplate the automation of the design
of active learning query strategies. In Haussmann et al.
(2019), the acquisition function was replaced by a policy
Bayesian neural network (BNN). The policy BNN selects
the optimal samples and gets feedback from the oracle to
adjust its acquisition mechanism in a reinforcement learning
way (Kaelbling et al., 1996), which is often referred to the
reinforcement active learning (RAL). Instead of focusing on
querying mechanisms, neural architecture search (Ren et al.,
2021a) (NAS) was employed in (Geifman and El-Yaniv,
2019) to automatically search for the most effective network
architecture from a limited set of candidate architectures
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in every active learning round. The designed algorithm
can then be integrated with the aforementioned querying
strategies.
3.1.2. Semi-supervised learning

Semi-supervised learning aims to utilize unlabeled sam-
ples to facilitate learning without human intervention as used
in active learning. Following Van Engelen and Hoos (2020),
semi-supervised learning can be mainly categorized into
two categories: inductive methods and transductive methods,
based on how the unlabeled samples are incorporated. Induc-
tive methods extend supervised algorithms with unlabeled
data to jointly train the prediction model, whereas trans-
ductive techniques are typically graph-based approaches that
directly produce the predictions for the unlabeled data.

Inductive semi-supervised methods. Self-training (a.k.a.
self-learning) (Yarowsky, 1995) methods are the most basic
semi-supervised learning approaches. First, a supervised
model is trained only on the labeled samples, then the
obtained model is applied to generate predictions for the
unlabeled samples (also known as pseudo-labeled data). The
most confident pseudo-labeled samples and the original la-
beled samples are then jointly used to re-train the supervised
model, and the process often repeats until a satisfactory
performance is achieved. Therefore, self-training methods
are versatile and can be integrated with any supervised
learning-based approaches. In Lee et al. (2013), the pseudo-
label approach was proposed for image classification and
evaluated on the MNIST dataset (Deng, 2012) with promis-
ing performance demonstrated. To improve the reliability of
pseudo-labels, the weighting of pseudo-labeled samples was
generally increased over time during the training process. In
Xie et al. (2020), the “noisy student” algorithm was proposed
for image classification tasks. As shown in Fig. 6, in the
framework a teacher model was first trained on the labeled
samples in a supervised way. The trained teacher model then
generated pseudo labels on the unlabeled samples. A student
model (large or equal size as the teacher model) was trained
with both the labeled and pseudo-labeled samples. During
the training of the student model, input and model noise,
such as stochastic depth, dropout, and data augmentation,
were applied to help the student model generalize better
than the teacher model. However, the teacher model was
trained without noise to provide accurate pseudo labels. In
Liu et al. (2021b), the authors applied the teacher-student
framework for semi-supervised object detection. The inputs
were augmented with weak and strong data augmentation
for the teacher and student models, respectively. To combat
class imbalance issues, focal loss (Lin et al., 2017b) was
applied and the teacher was progressively updated with the
student via the exponential moving average (EMA) update
(Tarvainen and Valpola, 2017).

Co-training (Blum and Mitchell, 1998) (also named
disagreement-based) methods extend the self-training to
two or more supervised learners and exploit disagreements
among the learners to improve the performance of the ma-
chine learning model. The learners provide independent

Teacher

Teacher

grass cotton

grass cotton

grass cotton

grass cotton

Predicted Label

Labeled 

images

Unlabeled 

images soft hard

Student

grass cotton grass cotton

+ NOISE

Pseudo-label

• RandAugment

• Dropout

• Stochastic depth Predicted Label/Pseudo-label

Cross-entropy loss

Cross-entropy loss

Figure 6: The framework of the “noisy student” algorithm (Xie
et al., 2020).

pseudo-labels for the unlabeled samples and exchange in-
formation through the unlabeled samples to improve their
performance. For example, in (Zhou, 2011, 2012), multi-
ple learners were incorporated into an ensemble for better
generalization. The ensemble learning (Dong et al., 2020)
approach combined the predictions of multiple base learners
and makes a final decision based on their combined output.

Intrinsically semi-supervised methods (Van Engelen and
Hoos, 2020) are another type of semi-supervised learning
approach that directly incorporate unlabeled samples into
the objective function without any intermediate steps or su-
pervised base learner. Among the methods, the most widely
used is semi-supervised support vector machines (Vapnik
and Vapnik, 1998) (S3VMs). It tries to identify a classi-
fication boundary in a low-density area (Ben-David et al.,
2009) that correctly classifies the labeled samples with as
few unlabeled samples violating the classification margin
as possible. Subsequently, Li et al. (2013); Chapelle et al.
(2008) were further proposed for improving the optimiza-
tion efficiency. For instance, Li et al. (2013) proposed the
WELLSVM algorithm as a solution to address the issue of
poor scalability in semi-supervised learning, which can lead
to the occurrence of local minimum problems.

Transductive semi-supervised methods. The aforemen-
tioned inductive semi-supervised approaches use both la-
beled and unlabeled samples to construct a model and
provide predictions for the entire data, while transductive
semi-supervised methods are only generating predictions
for the unlabeled samples. Transductive methods typically
construct a graph  = (𝜈,𝜀) over all data samples (i.e.,
labeled and unlabeled), where each node 𝜈𝑖 ∈ 𝜈 represents
a training sample and the edge 𝜀𝑖𝑗 ∈ 𝜀, 𝑖 ≠ 𝑗 corresponds to
the relation (e.g., distance or similarity) between the sample
𝑖 and 𝑗. Through the graph, data points with small dissimilar-
ities are viewed as “connected”, thus the label information of
labeled samples can be propagated to the unlabeled samples
through the edge connections. More specifically, the labeled
data samples are used as the initial labels for the labeled

Li et al.: Preprint submitted to Elsevier Page 6 of 34



A Systematic Review on Label-Efficient Learning in Agriculture

data points in the graph, and these labels are propagated to
the unlabeled data points by iteratively updating the label
of each data point based on the labels of its neighbors in
the graph. This process continues until the labels converge
or a stopping criterion is met. The resulting labels for the
unlabeled data points can be used to make predictions or
classifications for new data points. Graph construction and
inference over graphs are two key aspects of graph-based
transductive methods.

Graph construction is to form a graph structure that
captures the similarities among data points, which is char-
acterized by an adjacency matrix and an edge attribute
matrix. The adjacency matrix builds the connections be-
tween nodes, while the edge attribute matrix determines the
weights (i.e., distance or similarity) for the edges in the
graph. 𝜖-neighborhood (Blum and Chawla, 2001), 𝑘-nearest
neighbors (Blum and Chawla, 2001), and 𝑏-matching (Jebara
et al., 2009) are the three most common approaches to build
the adjacency matrix. Specifically, 𝜖-neighborhood (Blum
and Chawla, 2001) connects data samples with a distance
(e.g., Euclidean distance) below a pre-defined threshold 𝜖.
Obviously, the performance is heavily dependent on the
choice of 𝜖, which largely limits its applications in real-
world applications. On the other hand, 𝑘-nearest neighbors
methods (Blum and Chawla, 2001; Maier et al., 2008), as
the most common graph construction method, connect each
node to its 𝑘 nearest neighbors based on some distance mea-
sure (e.g., Euclidean distance). Both 𝜖-neighborhood and 𝑘-
nearest neighbors methods determine the node’s neighbors
for each node independently from the perspective of local
observations, which often leads to sub-optimal solutions
(Jebara et al., 2009). To address this issue, the 𝑏-matching
method proposed by Jebara et al. (2009) constructs the graph
via optimizing a global objective, ensuring each node has the
same number of neighbors and edge connections to enforce
the regularity of the graph. As for graph weighting, it refers
to the process of assigning weights to the graph edges.
Gaussian edge weighting (de Sousa et al., 2013) is one of
the most common weighting approaches that use Gaussian
kernel as the similarity measure of edge connections.

In practice, graph-based transductive semi-supervised
methods suffer severe scalability issues due to costly compu-
tational complexity during graph construction and inference
(Liu et al., 2012; Chong et al., 2020). Also, they are difficult
to accommodate new samples without graph reconstruc-
tion. Recently, Liu et al. (2014) and Zhang et al. (2017)
tackled the scalability problem by constructing smaller sub-
graphs so that graph inference can be executed efficiently.
For more graph-based semi-supervised learning methods,
(Chong et al., 2020) is referred for further reading.
3.1.3. Weakly supervised learning

Weakly supervised learning is often applied in scenar-
ios where only partial information (e.g., coarse-grained,
incomplete, or noisy labels) is provided. This is particularly
useful in scenarios where it is expensive or impractical to
obtain densely labeled data, such as in medical imaging or
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Figure 7: Examples of label costs of different annotation types.

satellite imagery analysis. For example, in the problem of
fruit segmentation and tracking (Ciarfuglia et al., 2023), it is
extremely time-consuming and cost-intensive to obtain fine-
grained annotations (i.e., dense pixel-level annotations). In-
stead, image-level or bounding-box annotations are cheaper
to obtain (Fig. 7).

To bridge the gap between weak supervision and dense
supervision signals, some heuristic priors are leveraged: 1)
pixels of the same classes often share common features like
color, brightness, and texture; 2) semantic relationships re-
main among pixels belonging to objects of the same category
across distinct images (Shen et al., 2022). Multi-instance
learning (MIL) and class activation mapping (CAM) meth-
ods are two representative weakly supervised learning ap-
proaches, which are detailed as follows.

Multi-instance learning (MIL) (Foulds and Frank, 2010;
Carbonneau et al., 2018) has attracted increased research
attention recently to alleviate growing labeling demands.
In MIL, training instances are grouped in sets, called bags,
and ground-truth labels are only available for the entire sets
instead of individual bags, which naturally fits various ap-
plications where only weak supervision labels (e.g., image-
level labels in Fig. 7) are given. The process of instance and
bag generation is shown in Fig. 8. The predictions can be
generated at the bag level or instance level. For example,
mi-SVM and MI-SVM MIL algorithms were proposed
by Andrews et al. (2002) for instance-level and bag-level
classification, respectively. Conventional machine learning-
based MIL approaches struggle with high-dimensional vi-
sual inputs (Wu et al., 2015). However, researchers have
recently turned to the study of weakly supervised learning,
utilizing deep representations to learn features (Wu et al.,
2015; Ilse et al., 2018). Refer to (Carbonneau et al., 2018)
for more MIL methods.

The Class activation mapping (CAM) technique was
proposed in Zhou et al. (2016) for discriminative object
classification and localization with only image-level labels.
As shown in Fig. 9, CAM highlights the class-discriminative
regions reflecting important image regions, which is gener-
ated by performing global average pooling on the convo-
lutional layers for the output layers and then mapping the
predicted class scores back to the previous convolutional
layers by taking a weighted linear summation. However,
standard CAM is generally architecture-sensitive and only
works for particular kinds of convolutional neural network
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Figure 8: The instance and bag generation process of multi-
instance learning (MIL). The bags are instances that are
grouped in sets. “+” and “-” represent positive and negative
instances, respectively.

(CNN) architectures/models with fully-connected layers due
to the direct connection between the feature maps generated
by the global average pooling and output layers (i.e., softmax
layers). To this end, gradient-weighted CAM (Selvaraju
et al., 2017) (Grad-CAM) was developed to address this is-
sue by sending the gradient signals of class information back
to the last convolutional layer without any modifications
on the networks. To alleviate the performance degradation
when inferring multiple objects within the same class, Grad-
CAM++ (Chattopadhay et al., 2018) extended Grad-CAM
with a more general formulation by introducing a pixel-
wise weighting scheme to capture the spatial importance
of the regions on the convolutional feature maps. While
gradient-based CAM approaches have achieved promising
progress, Score-CAM (Wang et al., 2020b) argued that these
approaches often suffer from gradient vanishing and false
confidence issues, resulting in unsatisfactory performance
on specific tasks. Wang et al. (2020b) replaced the gradient
methods (Chattopadhay et al., 2018) by taking a linear
combination of score-based weights and activation maps.
Fig. 10 shows the visualization comparison of Grad-CAM
(Selvaraju et al., 2017), Grad-CAM++ (Chattopadhay et al.,
2018), and Score-CAM (Wang et al., 2020b) on two input
images. It is obvious that Score-CAM shows a higher con-
centration at the relevant objects.

Input image Activation map CAM

Figure 9: Visualization of applying Class activation mapping
(CAM) (Zhou et al., 2016) on a “Sicklepod” weed image.

3.2. No Supervision
The objective of unsupervised learning is to train a rep-

resentation from unlabeled data that can be applied to future
tasks. This can be achieved through various methods such as
self-supervised learning, unsupervised representation learn-
ing, and generative models like auto-encoders and GANs (Qi
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Figure 10: Visualization of Grad-CAM (Selvaraju et al., 2017),
Grad-CAM++ (Chattopadhay et al., 2018), and Score-CAM
(Wang et al., 2020b) on two input images. Score-CAM shows
a higher concentration at the relevant object.

and Luo, 2020). These techniques allow for efficient gener-
alization and improved performance in downstream tasks.
Specifically, self-supervised learning focuses on predicting
implicit features in the data like spatial relationships or
transformations, while unsupervised representation learning
creates a condensed and informative representation of the
data without explicit guidance. Generative models like auto-
encoders learn to compress the input data into a latent space
representation, and then reconstruct the original data from
the compressed representation. GANs, on the other hand,
learn to generate new data by training a generator network
to produce data that is similar to the input data, and a dis-
criminator network to distinguish between real and fake data.
Although generative models have shown promising results
in unsupervised learning, there are other review papers (Lu
et al., 2022; Qi and Luo, 2020) that cover this topic in detail.
We will thus not discuss it in detail in this survey.
3.2.1. Self-supervised learning

Self-supervised learning (Jing and Tian, 2020; Schmarje
et al., 2021) is a branch of unsupervised learning approaches
that aims to train ML/DL models with large-scale unlabeled
data without any human annotations. Fig. 11 shows the
general framework of self-supervised learning approaches.
In the first stage (i.e., self-supervised pretext task train-
ing), the ML/DL model (e.g., convolutional neural networks
(CNN)) is explicitly trained on the unlabeled dataset to learn
data representations with automatically generated pseudo
labels based on data attributes such as spatial proximity,
colorization, and pixel intensities (Jing and Tian, 2020).
Since the pseudo labels are generated automatically without
any human annotation efforts (see next paragraph for more
details), very large-scale datasets are typically used for the
self-supervised learning stage. For example, for general
computer vision tasks, ImageNet (Deng et al., 2009) and Mi-
crosoft COCO (Lin et al., 2014) are often used as the pretext
tasks, and large-scale image datasets, e.g., PlantCLEF2022
(Goëau et al., 2022), are often served as the pretext datasets
for the agricultural applications (Xu et al., 2022b). After
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the self-supervised training is finished, the trained model is
fine-tuned on a small number of labeled samples (targeted
dataset) through knowledge transfer to overcome overfitting
(Ying, 2019) and improve the model performance.

…

Dataset (no labels)

…

Dataset (with labels)

Pretext task

Target task

Knowledge transfer
C

N
N

C
N

N

Self-supervised pretext task training

Supervised downstream task training

Figure 11: The pipeline of self-supervised learning.

Following the literature, self-supervised learning is typi-
cally categorized into generative, contrastive, and generative-
contrastive (adversarial) (Jing and Tian, 2020; Liu et al.,
2021a). In this survey, we will only focus on contrastive
learning methods, which are the more commonly used in
agricultural applications.

In supervised learning, samples are grouped via label
supervision. In self-supervised learning, however, no labels
are available for supervised learning. To address this issue,
DeepCluster (Caron et al., 2018) (see Fig. 12), a clustering
algorithm was first employed to produce pseudo labels by
grouping similar images in the embedding space generated
by a convolutional neural network (CNN). A classifier (i.e.,
discriminator) was then trained to tell whether two input
samples are from the same cluster, and the gradients were
back-propagated to train the CNN. To learn the semantic
meaning of the images, the CNN was trained to capture the
similarities within the same image class while also detect-
ing the differences between different classes via the cross-
entropy discriminative loss. There are also other works em-
ploying clustering methods during the pretext task training,
such as Yang et al. (2016); Xie et al. (2016); Noroozi et al.
(2018); Zhuang et al. (2019). Typically in such methods,
input images are first encoded into the embedding space,
followed by clustering these embedded features into distinct
groups based on a distance measurement. Finally, a CNN is
trained to differentiate between images from the same cluster
and those from different clusters.

Contrastive learning via different views over image pairs
is also explored in Tian et al. (2020); Caron et al. (2020),
in which different views of the same image are treated as
positive samples, while different images are considered as
negative ones. Siamese network structures (Chicco, 2021)
are widely adopted in these approaches by maximizing the
similarity between two augmentations of one image. For
instance, SimCLR Chen et al. (2020a) utilized a contrastive
loss in the latent space to learn the representation of visual
inputs. As shown in Fig. 13, two correlated views of each

Input CNN
Classification

Clustering

Pseudo-labels

Figure 12: The framework of DeepCluster algorithm. Deep
features are clustered iteratively and the cluster assignments
are used as pseudo-labels to learn the parameters of CNN
(Caron et al., 2018).

data sample were obtained by randomly applying two data
augmentation operators (𝑡 ∼  and 𝑡′ ∼  ) on the input
sample. Then, a base encoder network 𝑓 (⋅) and a projection
head 𝑔(⋅) were trained using a contrastive loss to maximize
the agreement between different augmented views of the
same sample to enhance the quality of the learned features.
Once training was finished, the projection head 𝑔(⋅) was
discarded, and the encoder 𝑓 (⋅) and the learned represen-
tation ℎ were utilized for downstream tasks. In another
influential self-supervised learning framework Grill et al.
(2020), BYOL (Bootstrap Your Own Latent), two neural
networks, known as the online and target networks, collabo-
rated and acquired knowledge from each other without using
negative samples. As shown in Fig. 14, BYOL cast the pre-
diction problem directly in the representation space, where
the online network learned to predict the target network’s
representation of the same image from different views. The
target network was constructed with the same architecture
as the online network, but its parameters were updated with
the exponential moving average (EMA) strategy. Once the
training was completed, only 𝑓𝜃 and 𝑦𝜃 were kept for the
image representation. In SimSiam (Chen and He, 2021), the
authors showed that simple Siamese networks can also learn
meaningful representations without negative image pairs,
large image batches, or momentum encoders. With a stop-
gradient operation, SimSiam achieved a faster convergence
speed than SimCLR, SwAV, and BYOL even with smaller
batch sizes.
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Figure 13: The framework of SimCLR Chen et al. (2020a)
algorithm.

Despite decent progress on cluster discrimination-based
contrastive learning (Caron et al., 2018; Zhuang et al., 2019),
the clustering stage is generally slow with poor perform-
ing as compared to later multi-view contrastive learning
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Figure 14: The framework of BYOL algorithm (Grill et al.,
2020).

approaches. In light of these problems, SwAV (swapping
assignments between multiple views, Caron et al. (2020))
addressed these issues by combining online clustering ideas
and multi-view data augmentation techniques into a cluster
discrimination approaches. Instead of comparing features
directly as in contrastive learning, SwAV (Fig. 15) utilized
a “swapped” prediction mechanism, in which the code of a
view from the representation of another view was predicted.
Experimental results showed that SwAV achieved state-of-
the-art performance and surpassed the supervised learning
approach on all the downstream tasks through knowledge
transfer.
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Figure 15: The framework of SwAV algorithm (Caron et al.,
2020).

3.2.2. Unsupervised representation learning
Clustering is another common technique that involves

categorizing similar sets of data into distinct clusters (groups)
based on some similarity measures (e.g., Euclidean dis-
tance). This powerful method utilizes the attributes of the
data to group it, making it a widely used approach in a range
of fields such as machine learning, image processing, and
video processing (Min et al., 2018). For example, 𝑘-means
(Hartigan and Wong, 1979) is a widely used clustering
algorithm that partitions a dataset into 𝑘 clusters based on the
similarity of the data points by iteratively assigning each data
point to the closest cluster centroid, and then updating the
centroid by taking the mean of all the data points assigned
to it. The algorithm terminates when the cluster assignments
no longer change, or a maximum number of iterations is
reached. Although 𝑘-means is simple to implement and
scalable to large datasets, it is sensitive to the initial choice
of centroids and may not perform well on datasets with
complex structures (Arthur and Vassilvitskii, 2007). To

address the above issues, 𝑘-means++ (Arthur and Vassil-
vitskii, 2007) improved 𝑘-means by generating the initial
cluster centroids by a more sophisticated seeding procedure
to spread the initial centroids out across the dataset well and
reduce the likelihood of getting stuck in a local optimum.

Recently, there has been growing interest in using deep
learning-based clustering approaches. Compared to tradi-
tional clustering approaches, these methods perform bet-
ter in processing high-dimensional and heterogeneous data
and capture non-linear relationships between data points by
leveraging deep neural networks. In contrast to traditional
clustering methods, which often rely on handcrafted features
and assumptions about data distributions, deep clustering
approaches can automatically learn useful representations
of the data from raw inputs (Aljalbout et al., 2018). For
example, JULE (Yang et al., 2016) proposed a recurrent un-
supervised learning framework for simultaneously learning
deep feature representations and clustering image data. As
shown in Fig. 16, in the forward pass, image clustering was
conducted via using Agglomerative clustering (Gowda and
Krishna, 1978) algorithm, while parameters of representa-
tion learning were updated through the backward process.
Furthermore, a single loss function was derived to guide
Agglomerative clustering and deep representation learning
simultaneously, benefiting from good representations, and
providing supervisory signals for clustering results.

CNN Clustering

Forward – Update clustering

Backward – Update representation parameters

Figure 16: The framework of JULE algorithm (Yang et al.,
2016).

4. Applications of Label-Efficient Learning in
Agriculture
In this section, we present a review of application studies

of label-efficient learning in the agricultural field. These
applications are organized into three main areas: precision
agriculture, plant phenotyping, and postharvest quality as-
sessment of agricultural products. The reviewed papers are
also categorized by the degrees of required supervision
defined in Section 3.
4.1. Precision agriculture

Precision agriculture, also known as precision or smart
farming, aims to improve agricultural production (e.g., crops
and animals) efficiency and sustainability through more
precise (e.g., site-specific) and resource-efficient farming
management strategies (Monteiro et al., 2021). It leverages
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advanced technologies in robots, artificial intelligence, sen-
sors, information theory, and communication to support crit-
ical agricultural tasks, such as plant health monitoring, crop
and weed management, fruit sorting and harvesting, and
animal monitoring and tracking. In the past decade, label-
efficient approaches have received significant attention from
the agricultural community to reduce expensive label costs
and improve learning efficiency for various applications as
summarized below.
4.1.1. Plant health

Plant diseases or disorders caused by biotic and abi-
otic stressors (Dhaka et al., 2021), such as microorganisms
(e.g., viruses, bacteria, fungi), insects, and environmental
factors, negatively affect crop yield and production quality
(Zhang et al., 2021; Lu et al., 2022). Imaging technolo-
gies through the analysis of plant leaf images (e.g., RGB,
NIR, and hyperspectral images taken by various cameras
or unmanned aerial vehicles (UAVs)) currently serve as
promising means for characterization and diagnosis of plant
health conditions (Xu et al., 2022a; Mahlein et al., 2018).
Recently, machine vision-based methods (e.g., CNN) have
been frequently adopted by the agricultural community with
promising performance demonstrated. However, expert an-
notations remain costly and critical challenges to develop
supervised learning-based machine vision systems with a
large-scale image dataset (Li and Chao, 2021). To reduce
the cost in labeling, label-efficient methods (Fig. 1) have
been utilized to develop machine vision systems for identi-
fying plant diseases and other health conditions with few or
no manual-labeled annotations. We next present the label-
efficient learning applications in plant health monitoring,
organized based on the taxonomy described in Section 3.
Weak supervision

Weak supervision methods, such as active learning, semi-
supervised learning, and weakly supervised learning are
widely adopted for enhancing the recognition of plant dis-
eases and other health conditions to reduce labeling costs.

Active learning. In Coletta et al. (2022), active learning
(Section 3.1.1) was explored to leverage unlabeled data to
help identify new threats (e.g., diseases or pests) appearing
in eucalyptus crops with the images acquired on Unmanned
Aerial Vehicle (UAV). To detect the new threats (i.e., Cer-
atocystis wilt, a new disease class) with just a few labeled
samples, the iterative classifier (IC, (Coletta et al., 2019))
framework was employed to identify instances with the new
disease. More specifically, the entropy and density-based
selection (EBS) algorithm (Coletta et al., 2019) was adopted
to measure the entropy of input instances, and the unlabeled
instances with high uncertain labels (i.e., high entropy) were
selected and labeled by a domain expert. Then, the newly
labeled instances were incorporated into the training set
to refine the classification model. The authors collected an
aerial image dataset containing 74,199 image instances with
a resolution of 4608 × 3456. Experimental results showed
that, with only 50 labeled samples, the proposed approach

was able to reduce the identification error to 8.8% and 12.7%
with 28.3% and 16.5% new diseased samples, respectively.
Although promising performance was achieved, the authors
did not discuss the situation when there are more than one
new disease classes.

Semi-supervised learning. Semi-supervised learning
(Section 3.1.2) has also been applied to improve plant dis-
ease identification performance by employing large amounts
of unlabeled data. For example, the pseudo-label approach
(Section 3.1.2) was employed in Amorim et al. (2019) to
utilize unlabeled samples for soybean leaf and herbivorous
pest identification. Firstly, three CNNs (i.e., Inception-V3,
Resnet-50, and VGG19 (Simonyan and Zisserman, 2014))
were pre-trained on the ImageNet (Deng et al., 2009) dataset
and then transferred to their own datasets through trans-
fer learning (Zhuang et al., 2020). The unlabeled sam-
ples were pseudo-labeled by five classical semi-supervised
methods, including Transductive Support Vector Machines
(TSVM) (Joachims et al., 1999)) and OPFSEMImst (Papa
et al., 2012). Two plant datasets, soybean leaf diseases
(SOYBEAN-LEAF, 6 classes with 500 images per class) and
soybean herbivorous pests (SOYBEAN-PESTS, a total of
5,000 images for 13 herbivorous pest classes), were collected
using UAVs under real field conditions with two different
percentages of unlabeled samples, 90%, and 50%. Experi-
mental results showed that Inception-V3 with OPFSEMImstachieved the best performance on the SOYBEAN-LEAF
dataset with an accuracy of 98.90%, compared to an accu-
racy of 99.02% obtained by VGG16 (Simonyan and Zisser-
man, 2014) with the fully labeled dataset. Similarly, ResNet-
50 with TSVM obtained the best accuracy of 90.19% on
the SOYBEAN-PESTS dataset, compared to an accuracy of
93.55% with ResNet-50 on the fully labeled samples. The
results showed that the proposed semi-supervised learning
methods have a good generalization ability, especially when
the labeled samples are limited. In Li and Chao (2021), the
pseudo-label approach and few-shot learning (Wang et al.,
2020c) were applied for plant leaf disease recognition with
only a few labeled samples and a large number of unlabeled
samples. To demonstrate the effectiveness of the proposed
approach, 1,000 images per class were randomly selected
from PlantVillage (Hughes et al., 2015) dataset, a public
dataset with 38 classes of plant leaf diseases and healthy
crops. The curated dataset was split into a source subset
with 28-class labeled samples and a targeted subset with the
remaining 10 classes in which only a few samples were la-
beled (fewer than 20 images). In their work, the authors first
pre-trained a CNN-based classifier on the source subset and
fine-tuned the model on the target subset through transfer
learning (Zhuang et al., 2020), aiming at recognizing unseen
samples. An adaptive selection method was proposed to se-
lect unlabeled samples that had prediction confidence higher
than 99.5% and feed them to the pre-trained classifier to
obtain the pseudo labels. Then the original labeled samples
and pseudo-labeled samples were both fed to fine-tune the
model. The proposed approach yielded average accuracies
of 90% and 92.6%, respectively, at the 5-shot and 10-shot
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Figure 17: Steps for the Attention-based Multiple Instance Learning Guided approach for citrus mite and insect pest classification
(Bollis et al., 2022).

settings, which outperformed baseline methods that only
gave an accuracy of 90% at 80-shot.

Weakly-supervised learning. Multi-instance learning
(MIL, Section 3.1.3) has also been evaluated to reduce label-
ing efforts in plant health detection. In Lu et al. (2017), an
automatic wheat disease identification and localization sys-
tem was developed based on the MIL framework with only
image-level annotations. To be specific, the input images
were first processed by two modified VGG16 (Simonyan
and Zisserman, 2014) models with the fully convolutional
network (FCNs) (Long et al., 2015) to generate some spatial
score maps, which were then utilized to obtain the disease
identification results based on the MIL framework. To lo-
calize the disease, a bounding box approximation (BBA)
algorithm was developed and implemented using OpenCV2
to obtain the bounding box information. An in-field disease
dataset (i.e., Wheat Disease Database 2017 (WDD2017)),
consisting of 9,230 images with six common wheat disease
classes and a healthy wheat class, was exploited to evaluate
the effectiveness of the proposed framework, reporting the
mean recognition accuracy up to 97.95%, which significantly
outperformed two conventional VGG16 (Simonyan and Zis-
serman, 2014) model variants (93.27% and 73.00%, respec-
tively). In Bollis et al. (2020), the authors applied the MIL
framework to automatically detect regions of interest (ROIs)
to identify plant disease symptoms. As shown in Fig. 17 (b),
firstly, pre-trained CNN models (e.g., Inception-v4 (Szegedy
et al., 2017), ResNet-50 (He et al., 2016), and MobileNet-
v2 (Sandler et al., 2018)) were trained on the annotated
dataset (original images with image-level labels), resulting

2OpenCV: an open-source computer vision library at https://opencv.
org/.

in a Bag model, which was applied to generate activation
maps for each input image. Image patches (i.e., instances)
were extracted based on the Grad-CAM algorithm (Selvaraju
et al., 2017)) to train a CNN model in a fully supervised way.
Lastly, a novel weighted evaluation method was proposed to
obtain the image class based on the instance probabilities.
The proposed framework was evaluated on a new Citrus Pest
Benchmark (CPB, including 7,966 mite images of six mite
species and 3,455 negative images) and the IP102 database
(Wu et al., 2019) that consists of 75,222 images of 102
classes), yielding an improvement of 5.8% (from 86.0% to
91.8%) for classifying patch instances as compared to the
manually-annotated method. To detect salient insects of tiny
regions, (Bollis et al., 2020) was extended to an attention-
based deep MIL framework in Bollis et al. (2022) (Fig. 17 (a)
and (c)) with only image-level labels. In the new framework,
CNN equipped with the novel attention-based activation
map architecture (Two-Weighted Activation Mapping (Two-
WAM) scheme) were able to dynamically focus their atten-
tion only on certain parts of the input images that effectively
affect the task (Chaudhari et al., 2021). Bollis et al. (2022)
reported an improvement of at least 16.0% on IP102 and
CPB databases compared to the literature baselines.

In Wu and Xu (2019), a two-step strategy was pro-
posed for the plant organ instance segmentation and disease
identification based weakly supervised approach with only
bounding-box labels. In the first stage, GrabCut (Rother
et al., 2004), a foreground segmentation and extraction al-
gorithm, was applied to obtain the pixel-level labels based
on the annotated bounding boxes. Then, Mask R-CNN (He
et al., 2017) was trained on these labeled samples for organ
instance segmentation. With the segmented instances, a
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lightweight CNN model was subsequently trained to identify
the leaf diseases. Applying the proposed framework on
a tomato disease dataset, consisting of 37,509 images of
ten common disease classes and a healthy class, showed a
segmentation accuracy of up to 97.5% and a recognition
accuracy of 98.61%. However, GrabCut algorithm may fail if
the background is complex or the background and the object
are very similar (Li et al., 2018).

In Kim et al. (2020), the weakly supervised learning
approach, class activation map (CAM) (Zhou et al., 2016),
was employed to classify and localize online onion disease
symptoms only with image-level annotation in a real-time
field monitoring system equipped with a high-resolution
camera. Through a local wireless Ethernet communication
network, the captured onion images were transmitted and
then processed, resulting in a dataset of 12,813 cropped
images at 224×224 resolution of six classes (normal growth,
disease symptom, lawn, worker, sign, and ground). The
weakly supervised learning framework ((Zhou et al., 2016),
Section 3.1.3) took the average values of the final feature
maps through the global average pooling (GAP) and trained
the classifier to know the importance of each feature map.
Four modified VGG16 (Simonyan and Zisserman, 2014)
networks with different network settings were tested with the
framework, achieving identification accuracies 𝑚𝐴𝑃@0.5
ranging from 74.1% to 87.2%. Despite the decent perfor-
mance, CAM (Zhou et al., 2016) algorithm can only be
applied to particular kinds of CNN architectures and CNN
models like VGG (Simonyan and Zisserman, 2014), which
greatly hinders the development of more robust and gener-
alized algorithms.
No supervision

Self-supervised learning has also been evaluated in plant
disease applications, while the conventional unsupervised
representation learning approaches (Section 3.2.1) remain
unexplored by the community for plant health applications.

Self-supervised learning. Contrastive learning based on
the Siamese network (Section 3.2.1) has been adopted to
reduce label costs for enhanced plant disease recognition.
In Fang et al. (2021), a novel self-supervised learning algo-
rithm, cross iterative under-clustering algorithm (CIKICS),
was employed for grouping (i.e., clustering) unlabeled plant
disease images to save expensive annotation time. Specif-
ically, a batch of feature vectors were first extracted from
the input images with ResNet-50 (He et al., 2016), and
further dimensional reduction was performed with the t-SNE
algorithm. Then, a Kernel k-means (Dhillon et al., 2004)
algorithm was adopted to cluster unlabeled data into the
normal clusters or the abnormal cluster through the CIKICS,
in which the normal clusters were pseudo-labeled as the
training set, and the abnormal cluster was considered as the
predicting set. A CNN-based image classification model was
trained on the training set and predicts the clusters for images
in the abnormal set. Two more similarity measurements
(i.e., similarity score calculated with the CNN-extracted
feature space and Siamese network (Chicco, 2021)) were

adopted to further improve the accuracy for classifying
images in the abnormal cluster. Experimental results on
the PlantVillage (Hughes et al., 2015) and Citrus Disease
Dataset (CDD) (Rauf et al., 2019) datasets showed that
the proposed framework achieved comparable or higher
performance than other clustering methods, representing av-
erage accuracies of 89.1%, 92.8%, and 77.9%, respectively.
However, the training process is not end-to-end and the
performance highly depends on the effectiveness of each
separate component. In Monowar et al. (2022), an end-to-
end deep Siamese model based on the AutoEmbedder (Ohi
et al., 2020) was proposed to cluster leaf disease images
without manual-labeled annotations. It was trained to distin-
guish the similarity between the image pairs with high cor-
relation or uncorrelation in a self-supervised way until the
model learns class discriminative features, which were then
used to generate clusterable feature embeddings that were
clustered by the k-means algorithm (Hartigan and Wong,
1979). Evaluated on the CDD dataset (Rauf et al., 2019),
the proposed approach achieved a clustering accuracy of
85.1%, outperforming other state-of-the-art self-supervised
approaches,including CIKICS (Fang et al., 2021) (13.9%)
and SimSiam (Chen and He, 2021) (58.2%).

In Kim et al. (2022), a novel self-supervised plant disease
detector was proposed by leveraging conditional normaliz-
ing flows (Kobyzev et al., 2020). Instead of inputting raw im-
ages into the flow model, a CNN model (i.e., Wide-ResNet-
50-2) was employed to extract the multi-scale features from
the images, which was pre-trained on the ImageNet (Deng
et al., 2009) dataset using the Simsiam ((Chen and He,
2021), Section 3.2.1) algorithm. The flow model was trained
to learn to map complex distributions of image features
to simple likelihoods, which indicated whether the input
images were infected or healthy. The proposed approach
was evaluated on the BRACOL (Esgario et al., 2020) and
PlantVillage (Hughes et al., 2015) datasets, yielding im-
provements of detection accuracies by 1.01% to 14.3% as
compared to the benchmark without self-supervised pre-
training.
4.1.2. Weed and crop management

Weeds can significantly reduce crop production as they
compete for crucial resources like water and nutrients, and
may serve as hosts for pests and diseases (Chen et al.,
2022a; Coleman et al., 2019; Coleman et al.). To address this
issue, machine vision-based weed control is emerging as a
promising solution, allowing for accurate identification and
localization of weed plants and site-specific, individualized
treatments such as spot spraying or high-flame laser weed
killing. However, the development of robust machine vision
systems is heavily reliant on large volumes of labeled
image datasets (Westwood et al., 2018; Chen et al., 2022a;
Dang et al., 2023), which is often cost-expensive and time-
consuming. As such, there is a growing research interest
in developing label-efficient learning algorithms for weed
(crop) recognition.
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Weak supervision

Algorithms with weak supervision, such as active learning
and semi-supervised learning approaches have been widely
explored. On the other hand, weakly-supervised learning
(Section 3.1.3) for weed and crop recognition remains
largely unexplored.
Active learning. To reduce the expensive labeling costs, in
Yang et al. (2022), the dissimilarity-based active learning
(DBAL, Section 3.1.1) framework was applied for weed
classification, which only required a small amount of rep-
resentative samples to be selected and labeled. Specifically,
pre-trained CNN models such as VGG (Simonyan and
Zisserman, 2014) and ResNet (He et al., 2016) were first
employed through transfer learning (Zhuang et al., 2020; Liu
et al., 2022a) to extract the feature representation from both
labeled and unlabeled samples. A binary classifier was then
trained on the extracted features to distinguish which group
the features come from. Then, the top-k most representa-
tive samples were selected through the calculation of the
Euclidean distance between the cluster centroid (generated
by the k-means (Hartigan and Wong, 1979) algorithm) of the
labeled samples and the unlabeled samples. These selected
samples were then labeled and used to re-train the CNN
models. The process continued until certain accuracy was
achieved or the maximum iteration number was reached. The
proposed approach was able to achieve classification accu-
racies of 90.75% and 98.97%, respectively, on DeepWeeds
(Olsen et al., 2019) dataset and Grass-Broadleaf dataset3
with only 32% and 27.8% labeled samples, which compared
favorably with the results obtained by training using fully
labeled datasets with classification accuracies of 91.5% and
99.52%, respectively. Despite promising results, the usage of
k-means (Hartigan and Wong, 1979) algorithm was sensitive
to the initial choice of centroids and may not perform well on
datasets with complex structures (Arthur and Vassilvitskii,
2007).

Semi-supervised learning. In Pérez-Ortiz et al. (2015),
a semi-supervised framework was developed for weed map-
ping and crop row detection in sunflower crops with UAV-
acquired images based on improved Hough transform and
Otsu’s method (Otsu, 1979). Different machine learning
algorithms and training strategies, including supervised k-
nearest and SVM, semi-supervised linear SVM, and unsu-
pervised K-means (Hartigan and Wong, 1979) algorithms,
were investigated and compared for classifying the pixels
into crops, soils, and weeds. The semi-supervised approach
yielded the best average mean average error (MAE) of
0.1268 as compared to 0.1697, 0.1854, and 0.1962 of su-
pervised k-nearest, SVM, and unsupervised learning (e.g., k-
means), respectively. However, the paper did not investigate
the effects of different proportions of labeled and unlabeled
samples on the developed semi-supervised approach.

The teacher-student framework (Section 3.1.2) was also
explored for weed detection. In Hu et al. (2021), the authors

3Grass-Broadleaf dataset: https://www.kaggle.com/datasets/fpeccia/

weed-detection-in-soybean-crops

combined the image synthesis and semi-supervised learning
framework for site-specific weed detection without manu-
ally labeled images. A novel cut-and-paste image synthesis
approach was proposed to generate high-fidelity plant im-
ages with target backgrounds and labels. The noisy teacher-
student framework (Xie et al., 2020) was then adopted to
train the Faster-RCNN (Ren et al., 2015) for semi-supervised
weed detection. More specifically, a teacher model was first
trained on the synthetic weed images and used to generate
pseudo-bounding box labels for the unlabeled images. A
student model was then initialized with the teacher’s model
weights and then jointly trained on the synthetic and pseudo-
labeled images. The teacher model was also updated with the
student model during the training process and was then used
to update the pseudo labels. The above process repeated until
satisfying performance was achieved. Experimental results
on a self-collected weed dataset showed that the proposed
semi-supervised approach achieved a mAP of 46.0% with
only synthetic images, which was comparable to the su-
pervised model trained using the fully-labeled real weed
dataset with only an mAP of 50.9%. However, the synthetic
images were in low resolution and poor quality, which may
limit the effects of the developed detection algorithm. Recent
advanced data generation approaches, such as GANs Lu
et al. (2022); Xu et al. (2023) and diffusion models (Chen
et al., 2022b) may be a promising way for high-fidelity image
generation and improve this semi-supervised weed detection
framework.

In Nong et al. (2022), a semi-supervised semantic seg-
mentation algorithm, SemiWeedNet, was developed for
pixel-wise crop and weed segmentation by utilizing a large
amount of unlabeled data. The state-of-the-art image seg-
mentation framework, DeepLabv3+ (Chen et al., 2018),
was applied to encode both labeled and unlabeled images,
which were then incorporated into the cross-entropy loss
and consistency regularization loss (Chen et al., 2020a),
respectively. A joint optimization loss was then proposed
to build with the two losses to achieve a balance between
labeled and unlabeled samples. In addition, an online hard
example mining (OHEM) strategy was proposed to prioritize
the hard samples. Tested on a public dataset WeedMap (Sa
et al., 2018), which contains 289 pixel-wise labeled UAV
images, SemiWeedNet achieved a mean Intersection-over-
Union (mIoU) of 69.2% with only 20% of labeled samples,
close to the performance of the fully supervised baseline (i.e,
an mIoU of 70.0%).
No supervision

Unsupervised learning: unsupervised representation learn-
ing and self-supervised learning are both evaluated for weed
and crop recognition.
Unsupervised representation learning. In Bah et al. (2018),
an unsupervised clustering algorithm was developed for
automatic inter-row weed detection in the bean and spinach
fields with UAV-acquired images. Specifically, the simple
linear iterative clustering (SLIC) algorithm (Achanta et al.,
2012) was adopted to delimit the crop rows and generate crop
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masks with the crop lines produced by a normalized Hough
transform. Then, the inter-weeds were determined in the
regions that do not intersect with the crop masks. A dataset
was constructed by the segmented inter-row weeds and crops
and used to train a binary CNN classifier (i.e., ResNet-
18 (He et al., 2016)). Experimental results showed that
the proposed approach obtained comparable performance
to the supervised learning baseline, with small accuracy
differences of 1.5% and 6% in the spinach and bean fields,
respectively. Despite impressive results in detecting inter-
row weeds, the approach was highly dependent on parameter
tuning for conventional computer vision algorithms, such as
the Hough transform used for crop and weed segmentation.

An unsupervised weed distribution and density estima-
tion algorithm was proposed in (Shorewala et al., 2021)
without pixel-level annotations as conventional image seg-
mentation algorithms. The unsupervised clustering algo-
rithm (Kanezaki, 2018) was employed to cluster the pix-
els of the input images into two classes (foreground (i.e.,
crops and weeds) and background (e.g., soil and other non-
vegetation pixels)). The extracted vegetation pixels were
divided into small non-overlapped tiles that were used for
training ResNet-50 (He et al., 2016) to further classify them
as crops or weeds. The weed density estimations were then
computed with the recognized weed pixels. The proposed
approach was validated on two datasets, the Crop/Weed
Field Image dataset (Haug and Ostermann, 2014) and the
Sugar Beets dataset (Chebrolu et al., 2017), and achieved
a maximum weed density estimation accuracy of 82.13%.
Despite the decent performance being achieved, the perfor-
mance was largely affected by the size of the tiles.

Self-supervised learning. In Güldenring and Nalpan-
tidis (2021), a self-supervised contrastive learning frame-
work, SwAV (Caron et al., 2020) (Section 3.2.1), was ex-
plored for plant classification and segmentation. Two back-
bone networks, i.e., ResNet-34 and xResNet-34, were eval-
uated and initially pre-trained on the ImageNet (Deng et al.,
2009) (i.e., pre-text tasks) in a self-supervised way and
then fine-tuned on the agricultural datasets (i.e., downstream
tasks). Evaluated on three agricultural datasets, DeepWeeds
(Olsen et al., 2019), Aerial Farmland (Chiu et al., 2020),
and a self-collected Grassland Europe dataset with online
images, Güldenring and Nalpantidis (2021) yielded the best
Top-1 accuracies of 94.9%, 70.6%, and 86.4%, which were
higher than that training without ImageNet pre-training (ac-
curacies of 94.4%, 68.4%, and 85.5%, respectively). Addi-
tionally, the authors showed that the proposed framework
was also effective in semi-supervised settings, by using
limited labeled samples to fine-tune the networks in a su-
pervised way. They concluded that only with 30% labeled
data of DeepWeeds, the pre-trained SwAV was able to out-
perform the classical transfer learning and fully supervised
approaches.

To demonstrate the performance of unsupervised clus-
tering algorithms on the weed classification, in dos San-
tos Ferreira et al. (2019), two CNN-based unsupervised

learning algorithms, JULE (Yang et al., 2016) and Deep-
Cluster (Caron et al., 2018) were benchmarked and evalu-
ated on two public datasets, Grass-Broadleaf dataset (dos
Santos Ferreira et al., 2017) and DeepWeeds dataset (Olsen
et al., 2019). In general, DeepCluster showed better perfor-
mance than the JULE method. For example, DeepCluster
achieved an accuracy of 83.4% and normalized mutual infor-
mation (NMI) of 0.43 on the Grass-Broadleaf dataset, com-
pared to JULE with an accuracy of 63.5% and NMI of 0.28.
The authors also proposed a semi-automatic data labeling
framework based on the clustered data to reduce the cost
of manual labeling for weed discrimination. Specifically,
DeepCluster was first used to group images into clusters,
and the representative samples in each cluster were then
labeled by a human expert. Experimental results showed
that hundreds of speedup on data labeling was achieved by
setting the number of clusters to be much smaller than the
number of samples in the dataset.

In Marszalek et al. (2022b), SimSiam (Chen and He,
2021) (Section 3.2.1) was employed for domain adaptation
in crop classification. The network with a transformer-like
encoder network was trained on data from previous years and
made predictions on the later years, thus expensive labeling
costs for new years were saved. The yield and climatological
dataset (Marszalek et al., 2022a) with various climatological
conditions for the years 2016, 2017, and 2018 was used to
validate the proposed approach, showing that the proposed
approach trained on data from 2016 and 2017 with suitable
augmentation techniques was able to achieve an overall
accuracy of 71% on data from the year 2018. As large as
16% further improvement is achieved when the model was
fine-tuned on 5% labeled data from the year 2018, very close
to the accuracy of 93% achieved by training on the entire data
(years 2016-2018).
4.1.3. Fruit detection

In-orchard fruit detection is an important yet challenging
task for automated fruit harvesting due to the unstructured
nature of the orchard environment and variations in field
lighting conditions (Zhang et al., 2022a). In recent years,
deep learning-based object detectors and segmentation net-
works have been extensively studied for fruit detection, par-
ticularly in the context of robotic harvesting, fruit counting,
and yield estimation (Koirala et al., 2019; Maheswari et al.,
2021; Chu et al., 2023). However, labeling large datasets for
training these models can be expensive and time-consuming.
To address this issue, researchers have turned to label-
efficient learning algorithms that utilize weak supervision
signals (see Fig. 1). These approaches can achieve satisfac-
tory performance while reducing the need for manual effort
in data collection and labeling.

Semi-supervised learning. In Roy et al. (2019), a semi-
supervised clustering framework was developed to recog-
nize apples for yield estimation with video clips acquired
in natural apple orchards under various color and lighting
conditions. As shown in Fig. 18, the input image (Fig. 18 (a))
was firstly over-segmented into SLIC superpixels (Achanta
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Figure 18: The pipeline of the semi/unsupervised learning algorithm for estimating apple counts for yield estimation (Roy et al.,
2019).

et al., 2012) (Fig. 18 (b)) using the LAB colorspace. The
superpixels were then modeled as a Gaussian Mixture Model
(GMM) (Bilmes et al., 1998) and clustered into similar
colored superpixels, representing different semantic com-
ponents such as apples, leaves, branches, etc. The first few
frames of the video clips were manual-labeled at pixel
level and used to classify and localize apple pixels using
GMM (Bilmes et al., 1998), expectation maximization (EM)
(Bilmes et al., 1998), and heuristic Minimum Description
Length (MDL) (Grünwald, 2005) algorithms (Fig. 18 (c-
d)), and the apple counts across video frames were merged
considering the camera motion captured by matching SIFT
features (Lowe, 1999). The proposed approach was trained
on a self-collected video dataset containing 76 apple trees
with a mixture of green and red apples, resulting in four
different manually annotated datasets with varied apple col-
ors and geometry structures, showing that it can achieve
counting accuracies ranging from 91.98% to 94.81% on
different datasets.

In Casado-García et al. (2022), three semi-supervised
learning approaches, i.e., PseudoLabeling (Lee et al., 2013),
Distillation (Hinton et al., 2015) and Model Distillation
(Bucila et al.), and 13 CNN architectures (e.g., DeepLabV3+
(Chen et al., 2018), HRNet (Sun et al., 2019), and U-
Net (Ronneberger et al., 2015)) were evaluated for the ob-
ject segmentation (i.e., bunches, poles, wood, leaves, and
background) with natural images obtained in a commercial
vineyard. A grape dataset was collected and open-sourced,
containing 405 natural color images with 85 manually anno-
tated and 320 unlabelled. Compared to training only with la-
beled samples, the semi-supervised learning approaches can
improve the mean segmentation accuracy MSA by at least
5.62% with the usage of a large number of unlabeled sam-
ples. DeepLabV3+ with Efficientnet-B3 backbone trained
with Model Distillation (Bucila et al.) yielded the highest
MSA of 85.86% on the bunch/leave segmentation tasks.
HRNet obtained the highest MSA of 85.91% for the object

segmentation tasks of all classes. However, the performance
of the semi-supervised learning approaches on the all-class
segmentation task was not reported.

In Khaki et al. (2021), the noisy student training algo-
rithm (Xie et al., 2020) (Section 3.1.2) was employed for on-
ear corn kernel counting and yield estimation. The counting
results were obtained with the Euclidean loss between the
estimated density map (generated by a lightweight VGG-16
network (Simonyan and Zisserman, 2014)) and ground truth.
A corn kernel dataset, containing 154,169 corn kernel im-
ages, was collected where 30,000 of them were labeled with
ground truth density maps using (Boominathan et al., 2016).
The noisy student-teacher framework was employed to gen-
erate pseudo-density maps. Experimental results showed
that the proposed approach yielded the lowest mean abso-
lute error (MAE) and root mean squared error (RMSE) of
41.36 and 60.27, outperforming the case of training with
only the labeled data with MAE and RMSE of 44.91 and
65.92, respectively. However, the developed approach still
relied heavily on a large number of labeled images (30,000
images), which can be time-consuming and labor-intensive,
especially when dealing with large and complex datasets.

Weakly-supervised learning. In Bellocchio et al. (2019),
a weakly supervised fruit counting framework was devel-
oped with only image-level annotations. The input image
was processed by a three-branch counting CNN across three
different image scales, i.e., 1, 1

2 , and 1
4 . The counting results

were set to be consistent at all the image scales. To further
ensure counting consistency, an image-level binary classi-
fication model was trained on the image-level annotations.
The output of the binary classifier was supposed to be
equal to the binarized counting results of the multi-branch
counting CNN constrained with a consistency loss function.
Experimental results showed that the proposed approach
achieved comparable counting accuracy as compared to two
supervised approaches while significantly outperformed a
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weakly supervised approach on three fruit datasets (i.e.,
apples, almonds, and olives).

The work Bellocchio et al. (2019) was then extended
for unseen fruit counting in Bellocchio et al. (2020) with
weak supervision and unsupervised style transfer methods
on image-level only annotations. Based on Bellocchio et al.
(2019), a Peak Stimulation Layer (PSL) (Zhou et al., 2018)
was adopted to facilitate the model training. To adopt the
trained model for different fruit species, the CycleGAN
(Zhu et al., 2017) was employed for the unsupervised do-
main adaptation, transferring the known fruit species to
unseen fruit species. It was trained with a designed presence-
absence classifier (PAC) that discriminates images contain-
ing fruits or not. The proposed approach was validated on
four different datasets: two almond datasets, an olive dataset,
and an apple dataset, showing a superior counting accuracy
than their previous approach (Bellocchio et al., 2019).

In Bellocchio et al. (2022), a weakly supervised learning
framework, Weakly-Supervised Fruit Focalization Network
(WS-FLNet), was developed for automatic fruit detection,
localization, and yield estimation. Specifically, U-Net (Ron-
neberger et al., 2015) was first employed to generate pixel-
wise activation maps that implicitly indicated the locations
of fruits trained using binary cross-entropy (BCE) loss with
only image-level annotations. The developed framework was
validated on ACFR-Mangoes dataset (Stein et al., 2016) and
ISAR-Almonds (Bellocchio et al., 2019) dataset. On ACFR-
Mangoes dataset, the proposed approach presented relatively
lower performance (with a MAE, a RMSE, and a MAEP
of 58.61%, 69.79%, and 33.80%, respectively) compared
to the supervised approach (i.e., with a MAE, a RMSE
and a MAEP of 27.66%, 15.52%, and 35.16%, respectively)
due to grouped and partially overlapped fruits. However,
on the ISAR-Almonds dataset, the authors showed that the
proposed approach (with a MAE, a RMSE, and a MAEP
of 71.83%, 63.68%, and 81.35%, respectively) outperformed
their previous work (Bellocchio et al., 2019) (with a MAE,
a RMSE and a MAEP of 88.33%, 83.29%, and 114.05%,
respectively) by a large margin.

In Ciarfuglia et al. (2023), a weakly-supervised learning
framework was proposed to detect, segment, and track table
grapes. As shown in Fig. 19, YOLOv5s (Jocher et al., 2020)
was applied for the detection tasks and trained on a small
amount of labeled data from a similar dataset, WGISD
(Santos et al., 2020). Then, the trained YOLOv5s model
was used to create pseudo labels for two target datasets: a
video dataset containing 1469 frames and an image dataset
with 134 images labeled with bounding boxes and 70 images
labeled at the pixel level. To accurately associate grape
instances across different video frames, two algorithms,
SfM (Santos et al., 2020) and DeepSORT (Wojke et al.,
2017), were utilized to interpolate the bounding boxes for
the remaining video frames. For accurate yield estimation,
Mask R-CNN (He et al., 2017) was adopted and trained
on the source dataset and generated pseudo masks for the
target datasets. Three pseudo mask refinement strategies,
i.e., morphological dilation, SLIC (Achanta et al., 2012),

and GrubCut (Rother et al., 2004), were then evaluated to
refine the segmentation masks based on the bounding boxes
obtained in the detection stage. Experiments conducted on
the image and video datasets showed that using pseudo-
labels, the 𝑚𝐴𝑃 0.5 was increased from 69% to 77.0% and
from 55.0% to 65%, respectively, compared to training only
on the source dataset. For the tracking performance across
the video frames, the SfM algorithm (Santos et al., 2020)
using the pseudo-labels achieved the lowest tracking error
of 9.0%, compared to the baseline approach trained without
the pseudo-labels with an error of 38.0%. For the segmen-
tation performance, the refinement trick GrabCut yielded
the highest improvement of 𝑚𝐴𝑃@[0.5 ∶ 0.95] by 1.13%
and 𝑚𝐴𝑃@0.75 by 4.58%. Although good performance is
achieved, the developed approach is not end-to-end and the
final performance highly depends on the performance of
each individual component.

In Bhattarai and Karkee (2022), the authors proposed a
weakly-supervised learning framework for flower and fruit
counting in highly unstructured orchard environments with
only image-level annotations. Instead of counting by ob-
ject detection (Farjon et al., 2020) with dense bounding
box annotations, a regression-based CNN network based
on VGG16 (Simonyan and Zisserman, 2014) was proposed
to estimate the count for a whole image without inferring
explicit information on the location of the objects based on
Score-CAM (Wang et al., 2020b) (Section 3.1.3) and Guided
Backpropagation (Springenberg et al., 2014). Experimental
results on self-collected apple flower and fruit canopy image
datasets showed that the proposed approach was able to learn
the underlying image features corresponding to the apple
flower or fruit locations and achieves the lowest MAE of 12.0
and 2.9 on the flower and fruit datasets, respectively.
4.1.4. Aquaculture

Precision aquaculture farming presents a unique set of
challenges when it comes to using imaging technology for
detecting and monitoring aquatic species (Li et al., 2021;
Føre et al., 2018). Underwater conditions can be adverse,
with poor illumination and low visibility in turbid water,
as well as cluttered backgrounds, making it difficult to ac-
quire high-fidelity and high-contrast images. Furthermore,
the scarcity of labeled aquaculture images available adds to
the complexity of underwater species recognition tasks. To
address these challenges, researchers have turned to active
learning algorithms that can achieve accurate and reliable
species recognition with a smaller number of labeled images
(Li et al., 2021; Kong et al., 2022).

Active learning. In Kong et al. (2022), an active learning
framework was proposed to classify fish feeding status for
sustainable aquaculture (Føre et al., 2018). The objective
was to train a CNN model to classify the input images into
four categories: no feeding, weak feeding, medium feeding,
and strong feeding by utilizing a large amount of unlabeled
data. To collect the image dataset, 50 fish (i.e., oplegnathus
punctatus) were kept in a well-controlled tank with a high-
resolution camera mounted on the top. Overall, 3,000 image
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Figure 19: The framework of a weakly-supervised learning algorithm for detecting, segmenting, and tracking table grapes
(Ciarfuglia et al., 2023).

Figure 20: The framework of an active learning-based algorithm for fish feeding status classification (Kong et al., 2022).

samples were collected, among which 100 were labeled and
placed into the labeled pool whereas the remaining 2,900
images were placed into the unlabeled pool. As shown in
Fig. 20, the proposed approach consisted of two major com-
ponents: a predictor and a selector. The predictor was made

of a CNN-based prediction network (i.e., VGG16 (Simonyan
and Zisserman, 2014)), which was trained on a small number
of labeled samples and tested on the test subset. If the test
accuracy was smaller than a predefined threshold 𝛿, then the
images in the unlabeled pool were fed into the selector to
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Table 1
Application of label-efficient learning in precision agriculture. 

Application Reference Problem Method 
Supervision 

Type 

Plant health 

Coletta et al. (2022) Eucalyptus disease identification Iterative classifier Active learning 

Amorim et.al. (2019) 
Soybean leaf disease and 
herbivorous pest identification Pseudo-labels 

Semi-supervised 
learning 

Li and Chao (2021) Plant leaf disease identification 

Lu et al. (2017) 
Wheat disease identification and 
localization 

MIL 
Weakly 

supervised 
learning 

Bollis et al. (2020) Citrus pest and disease 
identification Bollis et al. (2022) 

Wu and Xu (2019) Tomato disease identification GrabCut 

Kim et al. (2020) 
Onion downy mildew 
identification and localization 

CAM 

Fang et al. (2022) 
Plant disease image clustering 

Siamese 
Self-supervised 

learning 
Monowar et al. (2022) 

Kim et al. (2022) Plant disease detection 

Weed and 
crop 
management 

Yang et al. (2022) Weed identification DBAL Active learning 

Perez-Ortiz et al. (2015) Weed mapping in sunflower 
field Semi-supervised SVM 

Semi-supervised 
learning 

Hu et al. (2021) Weed identification 

Nong et al. (2022) Weed and crop segmentation 
Consistency regularization 

loss 

Bah et al. (2018) Inter-row weed detection SLIC 
Unsupervised 

learning Shorewala et al. (2021) 
Weed distribution and density 
estimation 

Clustering 

Guldenring and 
Nalpantidis (2021) 

Plant classification and 
segmentation 

SwAV 

Self-supervised 
learning 

dos Santos Ferreira et al. 
(2019) 

Weed identification JULE and DeepCluster 

Marszalek et al. (2022) Crop classification Contrastive learning 

Fruit 
detection 

Roy et al. (2019) Apple yield estimation 
Semi-supervised 

clustering 

Semi-supervised 
learning 

Casado-Garcıa et al. 
(2022) 

Grape segmentation 
PseudoLabeling, 

Distillation and Model 
Distillation 

Khaki et al. (2021) On-ear corn kernel counting Noisy student 

Bellocchio et al. (2019) 
Fruit counting 

Image-level method 

Weakly 
supervised 

learning 

Bellocchio et al. (2020) Image-level method 

Bellocchio et al. (2022) 
Fruit detecting, localizing, and 
yield estimation 

Image-level method 

 Ciarfuglia et al. (2023) 
Table grape detection, 
segmentation, and tracking 

GrubCut 

 
Bhattarai and Karkee 
(2022) 

Flower and fruit counting 
Score-CAM and Guided 

Backpropagation 

Aquaculture Kong et al. (2022) Fish feeding status identification Pool-based active learning Active learning 

 

obtain the uncertainty scores of each sample. Then, the most
representative (highly uncertain) unlabeled samples will be
selected and labeled by an oracle and added to the labeled
pool. The predictor was trained with the newly labeled pool
and the process repeats until the accuracy threshold on the
test subset was satisfied. Experimental results showed that
the proposed algorithm was able to achieve a classification

accuracy of 98% with only 10% of labeled samples, which
greatly reduced the labeling costs.
4.2. Plant Phenotyping

Plant phenotyping/phenomics in crop breeding involves
the quantification of various plant phenotypes, such as
growth dynamics and stress resistance, resulting from the
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complex interactions between genetics and environmental
conditions. Imaging technologies are critical for achieving
high-throughput, automated quantification of plant pheno-
types, thereby accelerating breeding processes and bridg-
ing the genotype-phenotype gap (Minervini et al., 2015;
Das Choudhury et al., 2019; Furbank and Tester, 2011).
However, extracting meaningful phenotypic information
from images is still challenging due to factors such as light-
ing variations, plant rotations, and occlusions (Das Choud-
hury et al., 2019). To address this, plant scientists have
turned to data-driven machine learning methods for effective
feature extraction, plant trait identification, and quantifi-
cation (Rawat et al., 2022). However, these methods typ-
ically require large amounts of labeled training samples,
which can be expensive and time-consuming to acquire.
To overcome this challenge, label-efficient learning algo-
rithms (Table 4.3), such as those with weak supervision and
no supervision labels, have been proposed and are being
actively researched in the plant phenotyping community
(Rawat et al., 2022).
Weak supervision

Active learning. In Rawat et al. (2022), four uncertainty-
based active learning algorithms were benchmarked and
evaluated for plant organ segmentation on three plant datasets,
ACFR Orchard Fruit Dataset (Apple) dataset (Bargoti and
Underwood, 2017), UTokyo Wheat 2020 (Wheat) dataset
(David et al., 2021), and UTokyo Rice 2013 (Rice) dataset
(Desai et al., 2019). The approach followed the standard
active learning framework as described in Section 3.1.1.
The least confidence method (Lewis, 1995), margin-based
method (MAR) (Scheffer et al., 2001), Shannon’s entropy
(Shannon, 2001), and deep Bayesian active learning (Gal
et al., 2017) approaches were evaluated and used to calculate
the informativeness score (IS) of each unlabeled sample.
Then, the sample with the maximum IS was selected and
labeled by a human expert. Deeplabv3+ (Chen et al., 2018)
with ResNet50 (He et al., 2016) backbone was employed
for segmentation tasks. On the apple and wheat datasets,
the MAR-based approach achieved 0.43% and 0.53% in-
creases in the intersection over union (IoU) compared to
the random sampling method. However, on the rice dataset,
random sampling showed better performance than the active
learning-based approaches. The authors concluded that, due
to imbalanced datasets, there was no clear winner among the
active learning methods across the datasets.

In Chandra et al. (2020), an active learning approach
based on point supervision (Fig. 7) was proposed for cereal
panicle detection to reduce the expensive annotation costs.
Three uncertainty estimation methods, i.e., max-variance,
max-entropy, and max-entropy-variance were explored to
estimate the uncertainties of each unlabeled sample, and
the most uncertain samples were selected and labeled by
an oracle. To further reduce the labeling costs, the authors
adopted a weakly supervised approach (Papadopoulos et al.,
2017) (i.e., point supervision), in which object centers were

ground-truthed by points instead of dense bounding box la-
beling. The labeled samples were used to train a CNN-based
object detector, i.e., Faster R-CNN (Ren et al., 2015). The
authors validated their approach on two public datasets, the
Wheat dataset (Madec et al., 2019) and the Sorghum dataset
(Guo et al., 2018). Compared to the baseline method (i.e.,
81.36% mAP and 106.76 ℎ annotation time), the proposed
methods achieved better performance with 55% labeling
time-saving at the same time on the Sorghum dataset, i.e.,
about 86% mAP and 60 ℎ annotation time. On the Wheat
dataset, the proposed approach saved up to 50% labeling
time (less than 12.75 ℎ) while also achieving superior perfor-
mance compared to the baseline methods (i.e., 73.31% mAP
and 29.14 ℎ annotation time).

In Blok et al. (2022), an uncertainty-aware active learn-
ing method (Morrison et al., 2019) was employed for in-
stance segmentation of broccoli heads, and the software was
made publicly available4. Mask R-CNN (He et al., 2017)
with ResNeXt-101 (Xie et al., 2017) as the backbone was
adopted for the instance segmentation task. Images with the
most uncertainties (Morrison et al., 2019) were sampled and
labeled for the model training. The proposed framework was
validated on a self-collected dataset, consisting of 16,000
RGB broccoli images of five broccoli classes (including
healthy, damaged, matured, broccoli head with cat-eye, and
broccoli head with head rot). With only 17.9% training data,
the proposed approach was able to achieve 93.9% mAP as the
fully supervised method. It was able to achieve comparable
performance as the random sampling approach with only
1∕3 of samples (900 v.s. 2700).

Semi-supervised learning. The pseudo-labeling ap-
proach (Lee et al., 2013) discussed in Section 3.1.2 is widely
explored for plant phenotyping applications. In Fourati et al.
(2021), the semi-supervised pseudo-labeling approach (Lee
et al., 2013) was employed for wheat head detection. Both
one-stage object detector (EfficientDet (Tan et al., 2020))
and two-stage object detector (Faster R-CNN (Ren et al.,
2015)) were evaluated on the detection tasks. The pseudo-
labeling approach was used to predict the labels for the
unlabeled samples in the test set to enrich the training set
and re-train the models. Evaluated on the Global Wheat
Head Detection (GWHD 2021) (David et al., 2020) dataset,
Faster-RCNN and EfficientDet yielded, respectively, 1.22%
and 0.79% improvements in detection accuracy compared
to training without semi-supervised learning. The developed
framework ranks in the top 6% in the Wheat Head Detection
challenge5. However, in the study, the systematic perfor-
mance comparison between Faster R-CNN and EfficientDet
was not reported. In Najafian et al. (2021), the pseudo-
labeling approach (Lee et al., 2013) was employed for wheat
head detection with video clips and only one video frame of
each video clip was labeled with the remaining unlabeled.
These unlabeled video frames were then pseudo-labeled
with a dedicated two-stage domain adaptation approach.

4Software: https://github.com/pieterblok/maskal
5Wheat Head Detection challenge: https://www.kaggle.com/

competitions/global-wheat-detection/overview
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With the developed framework, the one-stage object detector
(YOLO (Redmon et al., 2016)) obtained a mAP@0.5 of
82.70% on the GWHD 2021 dataset (David et al., 2020),
which outperformed the baseline method that only gives
a mAP@0.5 of 74.10%. In Li et al. (2022), the pseudo-
labeling approach (Lee et al., 2013) was applied for leaf
vein segmentation with only a few labeled samples. To en-
hance segmentation performance, an encoder-decoder net-
work, called Confidence Refining Vein Network (CoRE-
Net), was implemented and trained in a two-phased training
framework. In the first stage, the model was warm-start
trained on a few labeled samples (less than 10 samples for
each leaf class) in a supervised manner. Then, the pre-trained
model was used to generate pseudo labels for the unlabeled
samples. Li et al. (2022) collected and released the leaf
vein dataset (LVD2021), comprising 5406 images with 36
leaf classes. An improvement of up to 9.38% accuracy was
achieved using the semi-supervised learning approach.

In Ghosal et al. (2019), an active learning-based weakly
supervised learning framework was proposed for sorghum
head detection and counting with UAV-acquired images. A
CNN model, RetinaNet (Lin et al., 2017b) with the feature
pyramid network (FPN) (Lin et al., 2017a) as the back-
bone, was first trained on a single image to get a semi-
trained model that was used to generate pseudo labels (i.e.,
bounding boxes) for randomly selected unlabeled images.
The generated pseudo labels were then checked by human
annotators to validate the quality and high-quality ones are
used to refine the CNN model. The process was repeated
until the desired performance was achieved. The proposed
approach was evaluated on a sorghum dataset, consisting
of 1,269 manual-labeled images, yielding a coefficient of
determination (𝑅2) of 0.8815 between the ground truth and
predicted value. However, the random selection of unlabeled
samples to be labeled may lead to sub-optimal and efficient
solutions.

In Siddique et al. (2022), a novel semi-supervised learn-
ing framework based on Panoptic FPN (Kirillov et al., 2019)
was proposed for panoptic segmentation (Kirillov et al.,
2019) of fruit flowers. To increase the sample diversity,
a sliding window-based data augmentation approach (Dias
et al., 2018) was employed to augment both the labeled and
unlabeled samples. The model was firstly pre-trained on the
COCO (Lin et al., 2014) and COCO stuff (Caesar et al.,
2018) datasets and then fine-tuned on the labeled samples
in a supervised manner. The trained model was then used
to generate pseudo labels for the unlabeled samples and a
robust segmentation refinement method (RGR) (Dias and
Medeiros, 2018) was adopted to refine the predicted score
maps. The proposed method was evaluated on the multi-
species flower dataset (Dias et al., 2018), which contains four
subsets: AppleA, AppleB, Peach, and Pear. The proposed
algorithm with RGR refinement strategy yielded the highest
IoU and F1 scores on the APPLEB, Peach, and Pear subsets
and outperformed the supervised approach that was only
trained with a small amount of labeled data.

In Zhang et al. (2022b), self-distillation (Zhang et al.,
2019) with an advanced spectral-spatial vision transformer
network (Dosovitskiy et al., 2020) was proposed to accu-
rately predict the nitrogen status of wheat with UAV images.
The proposed spectral-spatial vision transformer contained a
spectral attention block (SAB) and a spatial interaction block
(SIB), which focused on the spectral and spatial information
between the image patches, respectively, to fully capture the
explicit encoding of patches. The teacher-student framework
(Section 3.1.2) was employed with the spectral-spatial vision
transformer networks as the base models. The teacher model
was updated by the student through the exponential moving
average (EMA). Evaluated on a total of 1,449 field images
of different growing stages collected by a UAV, the proposed
approach achieved an overall accuracy of 96.2% and outper-
formd the model trained without a semi-supervised training
strategy with an accuracy of 94.4%.

Weakly-supervised learning. The weakly-supervised
learning algorithm, High-Performance Instance Segmenta-
tion with Box Annotations (Boxinst) (Tian et al., 2021), was
employed in (Qiang et al., 2022) for instance segmentation
of leafy greens and phenotype tracking with only box-level
annotations. To better distinguish leaf green vegetables from
noisy backgrounds (e.g., shadow, dead grass, and soil), Ex-
cess Green (ExG) feature space was adopted instead of the
LAB color space. Furthermore, post-processing methods,
such as the area threshold method and k-means clustering
(Hartigan and Wong, 1979) algorithm, were applied to filter
weeds to achieve a clean instance segmentation of leafy
greens. A multi-object tracking algorithm (Bewley et al.,
2016) was then adopted to track the phenotypic changes
of each vegetable for monitoring and analyzing purposes.
Validated on a self-collected dataset, containing 656 training
images (with box annotations) and 92 testing images (with
pixel-level annotations), the proposed approach with ExG
feature space representations yielded an F1-score of 95%
on instance segmentation and multi-object segmentation and
tracking accuracy (MOTSA) of 91.6%, outperforming the
method with LAB with an F1-score of 92.0% and MOTSA
of 89.3%.

To develop an autonomous harvester, Kim et al. (2021)
proposed a weakly supervised crop area segmentation ap-
proach to identify the uncut crop area and its edge based
on computer vision technologies with only image-level an-
notations. A four-layer CNN model followed by a global
average pooling was trained to generate class activation
maps (CAMs) (Zhou et al., 2016), which were used for class-
specific scoring (i.e., crop, harvested area, and backgrounds)
by a Softmax layer. To evaluate the proposed framework, a
self-collected crop/weed dataset, containing 1,440 training
images and 120 testing images, was employed, showing that
the proposed approach yielded the lowest inference time
(less than 0.1 𝑠) and a comparable IoU value of 94.0%
– outperforming the FCN (Long et al., 2015) algorithm
with the inference time of 0.54 𝑠 and an IoU of 96.0%.
In Adke et al. (2022), two supervised learning algorithms
(Mask R-CNN (He et al., 2017) and S-Count) and two
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weakly supervised approaches (WS-Count (Bellocchio et al.,
2019) (MIL-CAM based weakly supervised counting) and
CountSeg (Cholakkal et al., 2020) (CAM (Zhou et al., 2016)
based counting with partial labels)) were implemented and
compared for cotton boll segmentation and counting us-
ing only image-level annotations. Evaluation on a cotton
dataset consisting of 4350 image patches showed that the
weakly supervised approaches, WS-Count and CountSeg
(RMSE values of 1.826 and 1.284, respectively), were able
to achieve comparable performance as the supervised learn-
ing approaches, S-Count and Mask R-CNN (He et al., 2017)
(RMSE values of 1.181 and 1.175, respectively), while the
weakly supervised approaches were at least 10× cost effi-
cient in labeling.

In Dandrifosse et al. (2022), an automatic wheat ear
counting and segmentation framework was developed based
on the weakly-supervised learning algorithm (Birodkar et al.,
2021) to reduce labeling costs. Firstly, YOLOv5 (Jocher
et al., 2020) model was trained on a self-collected dataset
with bounding box annotations to localize the wheat ear. To
avoid pixel-level annotations for the instance segmentation
of wheat ear, Deep-MAC algorithm (Birodkar et al., 2021)
was employed to segment the ears in the obtained bounding
boxes. Then, the ear counts were obtained by using the ear
density map. The proposed approach yielded an average F1
score of 86.0% for the wheat ear segmentation on a self-
collected dataset.

In (Petti and Li, 2022), multi-instance learning (MIL,
Section 3.1.3) was employed for cotton blossom counting
with aerial images. The images from an actual cotton field
collected with a drone were divided into some small and
overlapping patches (1/64 the size of an image) and parti-
tioned into two subsets: subset A with point labels and subset
B with binary image-level annotations indicating whether or
not blossoms were present in the image patches. A binary
classifier based on DenseNet-121 (Huang et al., 2017) was
trained on the subset A with the MIL framework using the
cross-scale consistency loss (Shen et al., 2018) to indicate
whether or not point annotations were present. To save
expensive labeling time, the trained CNN model was used
to generate annotations for the image patches in subset B,
and these annotations were then verified by a human expert.
Finally, both image patches in subsets A and B were used
to fine-tune the model. The proposed approach achieved a
minimum mean absolute count error (i.e., MAE) of 2.43,
outperforming other CNN-based approaches such as VGG-
16 (Simonyan and Zisserman, 2014) (MAE of 2.90) and
AlexNet (Krizhevsky et al., 2017) (MAE of 3.84).
No supervision

Unsupervised representation learning. In Wang and Xu
(2018), a conditional probability distribution model, named
conditional random field (CRF), based on the unsupervised
hierarchical Bayesian model, Latent Dirichlet Allocation
(LDA) model (Blei et al., 2003), was proposed for plant
organ (i.e., fruits, leaves, and stems) segmentation. The
LDA was used to generate the initial segmentation labels by

clustering pixels into different classes that are considered as
the unary potential used in the CRF model. To improve the
accuracy of image segmentation for different fruit growth
stages, a multi-resolution CRF (MRCRF) algorithm was pro-
posed to obtain multi-resolution features by down-sampling
the images twice. Experimental results on a self-collected
image showed that the proposed MRCRF was able to achieve
high image segmentation accuracies. However, the approach
was only evaluated on a small dataset with a few numbers
of images (i.e., 9 images). In Zhang and Xu (2018), LDA
was also employed to segment leaves and greenhouse plants
for plant phenotype analysis. The proposed approach was
evaluated on the subset A1 of the CVPPP dataset (Scharr
et al., 2014), achieving a high segmentation accuracy for
segmenting greenhouse plants and leaves.

Domain shift refers to the difference between the source
domains and target domains in the statistical distribution.
Unsupervised learning is adapted to the problem of adapting
a previously trained model on the source domain but testing
on a new target domain without annotations (i.e., domain
adaptation (DA)). In Giuffrida et al. (2019), an unsupervised
adversarial learning framework (ADDA) Tzeng et al. (2017)
was employed to reduce domain shift in leaf counting prob-
lem as shown in Fig. 21. First, the CNN model was pre-
trained on the source domain in a supervised learning man-
ner. Then, the feature representation of the source domain
and target domain were fed into the adversarial learning
network to minimize the domain shift and output the leaf
counting using the adversarial loss. Lastly, leaf counting can
be calculated on the target domain with the trained CNN
model. The authors trained the model on the subset A1,
A2, and A3 of the CVPPP dataset (source domain) (Scharr
et al., 2014) and tested on the MM dataset (Cruz et al.,
2016) (Intra-species DA) and Komatsuna dataset (Uchiyama
et al., 2017) (Inter-species DA), showing that the proposed
approach significantly outperformed the baseline methods
and obtained the lowest MSE of 2.36 and 1.84 for the intra-
species and inter-species DA, respectively. To address the
laborious labeling and domain shift issues in plant organ
counting for image-based plant phenotyping problems, an
unsupervised domain-adversarial learning approach (Ganin
et al., 2016) was employed in (Ayalew et al., 2020). The
framework consisted of two parallel classification networks:
one was designed for the source domain and another was
designed to distinguish whether the samples come from the
source domain or from the target domain. The proposed
approach was evaluated on two domains: the wheat spikelet
counting task (adapts from indoor images to outdoor im-
ages) (Alkhudaydi et al., 2022) and the leaf counting task
(adapts from one plant species to another different plant
species) (Giuffrida et al., 2019). Compared to the baseline
model without domain adaptation, the proposed approach
reduced the MAE and RMSE in the wheat spikelet counting
experiment by 59.3% and 58.0%, respectively. Similarly, it
yielded a 71.6% drop of MSE in the leaf counting problem
as compared to the baseline method.
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Figure 21: The unsupervised representation learning of domain
shift (Giuffrida et al., 2019).

Precision irrigation (Abioye et al., 2020) aims to op-
timize the irrigation volume of each crop with minimum
water volume. In Tschand (2023), an intelligent irrigation
system based on advanced computer vision algorithms was
developed to analyze the crop color and optimize the irriga-
tion volume for each crop. Image data acquired by a drone
system was first passed to the k-means clustering (Hartigan
and Wong, 1979) algorithm to isolate color clusters. Then,
the clustered image features were used to train a recurrent
neural network (RNN) to output predicted irrigation volume
(PIV) for precision irrigation. The NASA PhenoCam Veg-
etation Phenology Imaging dataset (Seyednasrollah et al.,
2019), containing 393 site data, was adopted to validate the
developed system, showing an average prediction accuracy
of 89.1% and an average ROC AUC of about 96.0%, which
was lower than the pre-defined error margins (5%).

Self-supervised learning. In Lin et al. (2022), a novel
self-supervised leaf segmentation framework was proposed
without manually labeled annotations. Specifically, a lightweight
CNN model was used to extract the pixel-level feature
representations from the input images and output semantic
labels. Then, the fully connected conditional random field
(CRF) method (Krähenbühl and Koltun, 2011) was adopted
to refine the generated pseudo labels. After that, a color-
based leaf segmentation algorithm was designed to identify
leaf regions in the HSV color space. To rectify the distorted
color in an image, a GAN-based pixel2pixel image trans-
lation network (Isola et al., 2017) was employed for color
correction, in which the generator learned to translate the
input images with poor lighting conditions to the images
with natural lighting conditions. The authors conducted the
experiments on two open-sourced datasets, Plant Phenotype
(CVPPP) and Leaf Segmentation Challenge (LSC) dataset
(Minervini et al., 2016) and a self-collected dataset Cannabis
dataset, showing that the proposed framework was able
to achieve better or comparable performance than some
mainstream unsupervised learning and supervised learning
algorithms. For example, the proposed approach achieved a
Foreground-Background Dice (FBD) score of 94.8% on the
Cannabis dataset, compared to the unsupervised approach
EM (Kumar et al., 2012) (FBD: 16.1%) and supervised
approach SYN (Ward et al., 2018) (FBD: 62.2%).

4.3. Postharvest quality assessment
Machine vision and imaging technologies have become

pervasive in the postharvest quality assessment of agricul-
tural products, with applications ranging from automated
grading and sorting based on shape, size, and color to more
complex defect detection tasks (Chen et al., 2002; Blasco
et al., 2017; Lu et al., 2020). However, due to the signif-
icant biological variations in horticultural products, defect
detection remains a challenging task that typically requires
manual inspection. To overcome this limitation, researchers
have turned to deep learning algorithms to enhance machine
vision systems’ capabilities. In particular, recent studies have
explored the use of label-efficient learning algorithms (as
summarized in Table 4.3) for defect detection tasks, reducing
the need for labeled training data and human efforts.
Weak supervision

Semi-supervised learning. In Li et al. (2019), an ensem-
ble stochastic configuration networks (SCNs, Wang and Li
(2017)) algorithm was employed for greengage grading with
the semi-supervised co-training (Blum and Mitchell, 1998).
A self-collected dataset, consisting of 996 labeled images
and 4,008 unlabeled images of four grades (excellent grade,
a superior grade with scars, defective grade, and defective
grade with scars), was used to validate the proposed ap-
proach. The unlabeled images were then pseudo-labeled by
the semi-supervised co-training approach. SCNs were then
trained on both labeled and pseudo-labeled samples with se-
mantic error entropy measure constraints (Chen et al., 2017).
SCNs achieved a recognition rate of 97.52%, exceeding
the accuracies obtained by CNN-based methods (Li et al.,
2017) by 4% and gaining 6% improvement from traditional
machine vision-based method (Jianmin et al., 2012).

Input image Heatmap OC-SVM DAM Mask Final segmentation

Figure 22: Example of the intermediate results of the weakly
supervised approach for detecting and segmenting potato
defects (Marino et al., 2019).

Weakly-supervised learning. In (Marino et al., 2019),
a weakly-supervised approach based on CAM (Zhou et al.,
2016) (Section 3.1.2) was proposed to detect and segment
potato defects for meticulous quality control with only
image-level annotations. To collect a face-wise dataset, each
potato was captured with four images from different views
and annotated by two experts into six categories: dam-
aged, greening, black dot, common scab, black scurf, and
healthy, resulting in 9,688 potato images. Based on gravity,
damaged and greening potatoes were further classified into
serious or light defects, finally resulting in a total of eight
potato classes. Three CNN-based classification models (i.e.,
AlexNet (Krizhevsky et al., 2017), VGG16 (Simonyan and
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The SSC is a neural network called C that is trained to distinguish 
the low-dimensional representations of the normal samples and the 
synthetic anomalous samples obtained by E . The operation of SSC can 
be represented as: 

ŷ = softmax(C (z|θC ) ) = softmax(C (E (x|θε)|θC )) (5)  

where ̂y is the predicted softmax probability, θC denotes the parameters 
of self-supervised classifier. 

2.4.3. Detailed description of training procedure 
In the training procedure, the AE and SSC are jointly optimized. 

Given a dataset of N normal samples and M synthetic samples, the loss 
function L of the SSC-AE is: 

L = γ1*LAE + γ2*LSSC (6)  

LAE =
1
N

∑N

i=1
‖xin − x̂in‖

2
2 (7)  

LSSC =
1
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i=1
yinlogŷ
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n +
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j=1
yjslogŷ

j
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In Eqs. (6) to (8), LAE is the loss function of the AE; LSSC refers to the 
loss function of the SSC; xi

n denotes the normal data; x̂i
n indicates the 

corresponding reconstructed data; ŷi
n and ŷj

s are the predicted proba-
bilities obtained by the SSC corresponding to the normal data and the 
synthetic data respectively; N and M represent the sample size of the 
normal data and the synthetic data respectively, while γ1 and γ2 are 
hyperparameters in the range of (0, 1). 

This loss function consists of two components: the L2-norm loss of the 
AE and the cross-entropy loss function of the SSC. It should be noticed 
that only normal samples are used for the optimization of LAE, because 
the AE should only learn to reconstruct the spectra of normal straw-
berries. On the other hand, both the normal samples and the synthetic 
samples go through the encoder of the AE for low-dimensional repre-
sentation extraction and are employed to train the SSC classifier. Such a 
network framework is designed so that the SSC can force the encoder to 
project normal and synthetic anomalous spectra into discriminative 
spaces. 

Fig. 1. Photographs of the anomalous strawberry samples.  

Fig. 2. Hyperspectral imaging system.  

Fig. 3. Architecture of the proposed SSC-AE for anomaly detection.  

Y. Liu et al.                                                                                                                                                                                                                                      

Figure 23: Architecture of the proposed self-supervised approach for anomaly detection of strawberries (Liu et al., 2022b).

Zisserman, 2014), and GoogleNet (Szegedy et al., 2015))
were first trained on the face-wise dataset through transfer
learning in a supervised manner. Inspired by CAM (Zhou
et al., 2016), the defect activation maps (DAMs) were
extracted from the CNN models to classify the potential
defects with only the image-level annotations. To further
improve the segmentation of the defects, a one-class support
vector machine (OC-SVM) was employed to identify the
abnormal pixels within the DAMs. The intermediate results
of the above process are shown in Fig. 22. Experimental
results showed that the proposed approach achieved an F1-
score of 94.0%, outperforming the conventional classifiers,
e.g., the SVM classifier with an F1-score of 78.0%. However,
the datasets used in the study were collected in laboratory
environments, which may not be feasible for practical usage
with more complex lighting and operating environments in
the real world.
No supervision

Self-supervised learning. In Liu et al. (2022b), the
authors proposed a novel self-supervised anomaly detection
method, SSC-AE network, with hyperspectral strawberry
data. A strawberry anomaly detection dataset, containing
601 normal and 339 anomalous strawberry samples, was
collected with an NIR hyperspectral imaging instrument to
validate the developed framework. As shown in Fig. 23, the
SSC-AE network consisted of two components, an autoen-
coder (AE) and a self-supervised classifier (SSC), where the
AE network was designed to extract the informative feature
representations and the SSC network was trained to distin-
guish whether the learned feature representations come from
the normal strawberries or synthetic anomalous strawberries
generated by mixing the spectra of normal strawberries with
various objects (e.g., milk powder, tomatoes, and grapes),
which were updated with a joint optimization loss. Exper-
imental results showed that SSC-AE achieved the highest
anomaly detection performance with an AUC score of 0.908
± 0.005 and an F1-score of 0.840 ± 0.005, topping the six
baseline methods.

5. Discussion and Future Research Directions
Label-efficient learning has shown promising results in

minimizing the need for annotated data and improving the
accuracy of DL models in various applications, but there
are still several unresolved issues related to training and
evaluation that must be carefully considered to fully harness
its benefits, such as pseudo-label refinement for unlabeled
data, open-set learning from unlabeled data, continual learn-
ing from unlabeled data, and multi-modal learning from
unlabeled data.
5.1. Pseudo-label refinement for unlabeled data

Label-efficient learning algorithms utilize unlabeled
data to facilitate training, and pseudo-labels are commonly
employed for representation learning, such as semi-supervised
learning and self-supervised learning, therefore it is crucial
to keep up the quality of the pseudo-labels. Recent research
focuses on removing unreliable samples within uncertain
pseudo-labels (Sohn et al., 2020; Liu et al., 2021b) to address
the side effects of the unreliable pseudo-labels. For example,
in Fixmatch Sohn et al. (2020), a pseudo-label was retained
only if the model produces a high-confidence prediction.
On the other hand, research like (Wang et al., 2021, 2022)
focused on utilizing these unreliable and noisy pseudo-
labels to enhance feature representation. For instance, a
novel uncertainty-aware pseudo-label refinery framework
was proposed in Wang et al. (2021) to progressively refine
high-uncertainty predictions during the adversarial training
process to generate more reliable target labels.

In future works, research could focus on developing
novel algorithms that improve the quality of pseudo-labels,
as well as examining the trade-offs between using reliable
and unreliable pseudo-labels (Wang et al., 2021). Addition-
ally, exploring the theoretical underpinnings of these ap-
proaches and the properties of pseudo-labels could provide
insights into how to better design and use these methods
(Sohn et al., 2020).
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Table 2
Application of label-efficient learning in plant phenotyping and post-harvest quality assessment. 

Application Reference Problem Method Supervision Type 

Plant 
phenotyping 

Rawat et al. (2022) Plant organ segmentation 
Uncertainty-
aware active 

learning 
Active learning 

Chandra et al. (2020) Cereal Panicle detection 

Blok et al. (2022) 
Broccoli head instance 
segmentation 

Fourati et al. (2021) 
Wheat head detection 

Pseudo labeling 

Semi-supervised 
learning 

Najafian et al. (2021) 

Li et al. (2022) Leaf vein feature segmentation 

Ghosal et al. (2019) 
Sorghum head detection and 
counting 

Self-training 

Siddique et al. (2022) 
Fruit flower panoptic 
segmentation 

Pseudo labeling 

Lin et al. (2022) Leaf segmentation Self-distillation 

Zhang et al. (2022) Wheat nitrogen status prediction Teacher-Student 

Qiang et al. (2022) 
Leafy green instance 
segmentation and tracking 

Boxinst 

Weakly 
supervised 

learning 

Kim et al. (2021) Crop area segmentation CAMs 

Adke et al. (2022) 
Cotton boll segmentation and 
counting 

MIL-CAM and 
CountSeg 

Dandrifosse et al. 
(2022) 

Wheat ear counting and 
segmentation 

DeepMAC 

Petti and Li (2022) Cotton blossom counting MIL 

Wang and Xu (2018) Plant organ segmentation 
LDA 

Unsupervised 
learning 

Zhang and Xu (2018) 
Leaf and greenhouse plant 
segmentation 

Giuffrida et al. (2019) Leaf counting Adversarial 
learning Ayalew et al. (2020) Plant organ counting 

Tschand (2023) Crop color analysis 
K-means 
clustering 

Postharvest 
quality 
assessment 

Li et al. (2019) Greengage grading Co-training 
Semi-supervised 

learning 

Marino et al. (2019) 
Potato defects detection and 
segmentation 

CAM 
Weakly 

supervised 
learning 

Liu et al. (2022) Strawberry anomaly detection Autoencoder 
Self-supervised 

learning 

 

5.2. Open-set learning from unlabeled data
In label-efficient learning, the goal is to train a model

with as few labeled samples as possible, while leveraging
a large amount of unlabeled data. However, when dealing
with open-set challenges, where the unlabeled data may
contain unknown or unseen classes, the effectiveness of
label-efficient learning may be greatly hindered (Chen et al.,
2022c; Fontanel et al., 2022). Most existing label-efficient
learning methods assume a closed-set scenario, where the
unlabeled data comes from the same data distribution as the
labeled data (Liu et al., 2022c). However, in an open-set sce-
nario, where the unlabeled data contains out-of-distribution

(OOD) samples (Saito et al., 2017; Bousmalis et al., 2017),
e.g., task-irrelevant or unknown samples, directly applying
these label-efficient methods may lead to significant per-
formance degradation due to catastrophic error propagation
(Liu et al., 2022c).

To address open-set challenges in label-efficient learn-
ing, recent works propose various sample-specific selection
strategies to detect and then discount the importance or
usage of OOD samples (Liu et al., 2022c; Guo et al., 2020).
The pioneer works, such as UASD (Chen et al., 2020b)
and DS3L (Guo et al., 2020), proposed dynamic weighting
functions to down-weight the unsupervised regularization
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loss term proportional to the likelihood that an unlabeled
sample belongs to an unseen class. Follow-up works, such
as Liu et al. (2022c), added an additional OOD filtering
process into the existing semi-supervised approaches during
training to detect and discard potentially detrimental sam-
ples. For example, an offline OOD detection module based
on DINO (Caron et al., 2021) model was first pre-trained
in a self-supervised way and fine-tuned with the available
labeled samples. The OOD objects were then filtered out
by computing the distance between the feature vectors of
the image and the available labeled data. However, open-set
label-efficient learning still faces many challenges, such as
it is challenging to integrate OOD detection or novel class
discovery with existing algorithms in a unified model to
advance the selective exploitation of noisy unlabeled data
(Liu et al., 2022c).

In summary, open-set challenges in label-efficient learn-
ing require the development of new methods that can effec-
tively handle OOD samples and unknown classes. Future re-
search efforts should focus on developing unified models that
can integrate OOD detection and novel class discovery with
label-efficient learning and address the challenges posed by
distribution mismatch (Saito et al., 2017), imbalanced class
distribution (Chen et al., 2020b), and discovery of unseen
classes (Liu et al., 2022c) in real-world unlabeled data.
5.3. Continual learning from unlabeled data

Label-efficient learning with continual learning refers
to the scenario where a model has to learn from limited
labeled data and incrementally update its knowledge with
new unlabeled data (Chen et al., 2022c; Wang et al., 2023).
This is particularly relevant in real-world scenarios where
data may be expensive to label or not readily available. In
this context, continual learning (CL), also referred to as
incremental learning or lifelong learning aims to extend the
knowledge of an existing model without accessing previous
training data (Chen et al., 2022c; Wang et al., 2023).

To prevent catastrophic forgetting when continuously
updating the model, most CL approaches use regularization
objectives to retain the knowledge of previous tasks (Mc-
Closkey and Cohen, 1989). However, in label-efficient learn-
ing scenarios, there is an additional challenge in not having
access to all the unlabeled training data at once, due to, for in-
stance, privacy concerns or computational constraints. One
possible approach to label-efficient incremental learning is
to use unlabeled data to estimate the importance weights of
model parameters for old tasks, thus preventing catastrophic
forgetting (Aljundi et al., 2018). Another approach is to use
knowledge distillation objectives to consolidate the knowl-
edge learned from old data (Lee et al., 2019). However,
addressing challenges such as modeling new concepts and
evolving data streams remains a nontrivial task. It also poses
a new challenge to expand the representations for novel
classes and unlabeled data. To this end, several strategies are
adopted to dynamically update representations in the latent
space, including creating new centroids by online clustering
(Smith et al., 2019) and updating the mixture of Gaussians

(Rao et al., 2019). Self-supervised techniques have also been
applied to the unlabeled test data to overcome possible shifts
in the data distribution (Sun et al., 2020; Wang et al., 2020a).

In summary, the open challenges in label-efficient learn-
ing with incremental learning include addressing catas-
trophic forgetting (Lee et al., 2019), modeling new con-
cepts (Chen et al., 2022c), and distribution shifts (Sun
et al., 2020). Without access to all the unlabeled training
data at once, directly applying many existing label-efficient
learning methods may not guarantee good generalization
performance. For instance, pseudo-labels may suffer from
the confirmation bias problem (Arazo et al., 2020) when
classifying unseen unlabeled data. Incremental learning
from a stream of potentially non-i.i.d. unlabeled data also
remains an open challenge in this area.
5.4. Multi-modal learning from unlabeled data

Multi-modal learning (Baltrušaitis et al., 2018) from
unlabeled data is a promising approach for improving model
representation learning, where multiple modalities such as
color, depth, and intensity are utilized to form discrimi-
native (self-)supervision signals. For example, recent re-
search has shown that the joint modeling of multi-modal
data can be beneficial for agricultural applications, such as
fruit detection (Gené-Mola et al., 2019), weed recognition
(Steininger et al., 2023) and crop production enhancement
(Sharma et al., 2022). Multi-modal learning combines mul-
tiple modalities, i.e., visual, audio, and text modalities, with
label-efficient learning methods, such as semi-supervised
(Cai et al., 2013), self-supervised learning (Alayrac et al.,
2020), and unsupervised learning (Hu et al., 2019) has
been explored in general computer vision tasks. However,
multi-modal learning from unlabeled data is still largely
unexplored for agricultural applications. Future directions
in this field involve addressing this semantic gap between
modalities and developing more robust algorithms for multi-
modal label-efficient learning in agricultural applications.

In conclusion, despite the significant progresses made in
label-efficient learning in agriculture, there are still several
challenges that remain, as discussed above. Nevertheless, if
these challenges are adequately addressed and the oppor-
tunities presented by label-efficient learning are leveraged,
it has tremendous potential to substantially reduce the cost
and time required for data annotation. As a result, this could
make deep learning models more accessible and practical for
a diverse range of agricultural applications.

6. Summary
In recent years, the development of label-efficient meth-

ods has gained increased interest in agricultural research
due to the high cost and difficulty of obtaining large-scale
labeled datasets. This survey provided a principled taxon-
omy to organize these methods according to the degree
of supervision, including methods under weak and no su-
pervision. A systematic review of various applications in
agriculture, such as precision agriculture, plant phenotyping,
and postharvest quality assessment, was then presented.
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Through this survey, we highlighted the importance of label-
efficient methods for improving the performance of ML/DL
models with limited labeled data in agriculture and discussed
the open challenges and future research directions in this
area. The insights provided by this study can serve as a
valuable resource for researchers and practitioners interested
in developing label-efficient methods, ultimately leading to
further advancements in the field. By providing an overview
of recent developments and highlighting the potential of
label-efficient methods in agriculture, this survey aims to
stimulate further research in this important and exciting
field.

Authorship Contribution
Jiajia Li: Conceptualization, Investigation, Software,

Writing – original draft; Dong Chen: Conceptualization,
Investigation, Software, Writing – original draft; Xinda Qi:
Conceptualization, Investigation, Writing – original draft;
Zhaojian Li: Supervision, Writing - review & editing;
Yanbo Huang: Supervision, Writing - review & editing;
Daniel Morris: Writing - & review & editing. Xiaobo Tan:
Writing - & review & editing.

References
E. A. Abioye, M. S. Z. Abidin, M. S. A. Mahmud, S. Buyamin, M. H. I.

Ishak, M. K. I. Abd Rahman, A. O. Otuoze, P. Onotu, and M. S. A. Ramli.
A review on monitoring and advanced control strategies for precision
irrigation. Computers and Electronics in Agriculture, 173:105441, 2020.

R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Süsstrunk. Slic
superpixels compared to state-of-the-art superpixel methods. IEEE
transactions on pattern analysis and machine intelligence, 34(11):2274–
2282, 2012.

S. Adke, C. Li, K. M. Rasheed, and F. W. Maier. Supervised and weakly
supervised deep learning for segmentation and counting of cotton bolls
using proximal imagery. Sensors, 22(10):3688, 2022.

C. Aggarwal, X. Kong, Q. Gu, J. Han, and P. Yu. Active learning: A survey,
pages 571–605. CRC Press, Jan. 2014. ISBN 9781466586741. doi:
10.1201/b17320. Publisher Copyright: © 2015 by Taylor & Francis
Group, LLC.

J.-B. Alayrac, A. Recasens, R. Schneider, R. Arandjelović, J. Ramapuram,
J. De Fauw, L. Smaira, S. Dieleman, and A. Zisserman. Self-supervised
multimodal versatile networks. Advances in Neural Information Pro-
cessing Systems, 33:25–37, 2020.

E. Aljalbout, V. Golkov, Y. Siddiqui, M. Strobel, and D. Cremers. Clustering
with deep learning: Taxonomy and new methods. arXiv preprint
arXiv:1801.07648, 2018.

R. Aljundi, F. Babiloni, M. Elhoseiny, M. Rohrbach, and T. Tuytelaars.
Memory aware synapses: Learning what (not) to forget. In Proceedings
of the European conference on computer vision (ECCV), pages 139–154,
2018.

T. Alkhudaydi et al. Counting spikelets from infield wheat crop images us-
ing fully convolutional networks. Neural Computing and Applications,
pages 1–22, 2022.

W. P. Amorim, E. C. Tetila, H. Pistori, and J. P. Papa. Semi-supervised
learning with convolutional neural networks for uav images automatic
recognition. Computers and Electronics in Agriculture, 164:104932,
2019.

S. Andrews, I. Tsochantaridis, and T. Hofmann. Support vector machines
for multiple-instance learning. Advances in neural information process-
ing systems, 15, 2002.

E. Arazo, D. Ortego, P. Albert, N. E. O’Connor, and K. McGuinness.
Pseudo-labeling and confirmation bias in deep semi-supervised learn-
ing. In 2020 International Joint Conference on Neural Networks
(IJCNN), pages 1–8. IEEE, 2020.

D. Arthur and S. Vassilvitskii. K-means++ the advantages of careful seed-
ing. In Proceedings of the eighteenth annual ACM-SIAM symposium on
Discrete algorithms, pages 1027–1035, 2007.

T. W. Ayalew, J. R. Ubbens, and I. Stavness. Unsupervised domain adap-
tation for plant organ counting. In European conference on computer
vision, pages 330–346. Springer, 2020.

M. D. Bah, A. Hafiane, and R. Canals. Deep learning with unsupervised
data labeling for weed detection in line crops in uav images. Remote
sensing, 10(11):1690, 2018.

T. Baltrušaitis, C. Ahuja, and L.-P. Morency. Multimodal machine learning:
A survey and taxonomy. IEEE transactions on pattern analysis and
machine intelligence, 41(2):423–443, 2018.

S. Bargoti and J. P. Underwood. Image segmentation for fruit detection and
yield estimation in apple orchards. Journal of Field Robotics, 34(6):
1039–1060, 2017.

E. Bellocchio, T. A. Ciarfuglia, G. Costante, and P. Valigi. Weakly
supervised fruit counting for yield estimation using spatial consistency.
IEEE Robotics and Automation Letters, 4(3):2348–2355, 2019.

E. Bellocchio, G. Costante, S. Cascianelli, M. L. Fravolini, and P. Valigi.
Combining domain adaptation and spatial consistency for unseen fruits
counting: a quasi-unsupervised approach. IEEE Robotics and Automa-
tion Letters, 5(2):1079–1086, 2020.

E. Bellocchio, F. Crocetti, G. Costante, M. L. Fravolini, and P. Valigi. A
novel vision-based weakly supervised framework for autonomous yield
estimation in agricultural applications. Engineering Applications of
Artificial Intelligence, 109:104615, 2022.

S. Ben-David, T. Lu, D. Pál, and M. Sotáková. Learning low density
separators. In Artificial Intelligence and Statistics, pages 25–32. PMLR,
2009.

A. Bewley, Z. Ge, L. Ott, F. Ramos, and B. Upcroft. Simple online and
realtime tracking. In 2016 IEEE international conference on image
processing (ICIP), pages 3464–3468. IEEE, 2016.

U. Bhattarai and M. Karkee. A weakly-supervised approach for flower/fruit
counting in apple orchards. Computers in Industry, 138:103635, 2022.

J. A. Bilmes et al. A gentle tutorial of the em algorithm and its application to
parameter estimation for gaussian mixture and hidden markov models.
International computer science institute, 4(510):126, 1998.

V. Birodkar, Z. Lu, S. Li, V. Rathod, and J. Huang. The surprising impact
of mask-head architecture on novel class segmentation. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pages
7015–7025, 2021.

J. Blasco, S. Munera, N. Aleixos, S. Cubero, and E. Molto. Machine Vision-
Based Measurement Systems for Fruit and Vegetable Quality Control
in Postharvest, pages 71–91. Springer International Publishing, Cham,
2017. ISBN 978-3-319-60111-3. doi: 10.1007/10_2016_51. URL
https://doi.org/10.1007/10_2016_51.

D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. Journal
of machine Learning research, 3(Jan):993–1022, 2003.

P. M. Blok, G. Kootstra, H. E. Elghor, B. Diallo, F. K. van Evert, and E. J.
van Henten. Active learning with maskal reduces annotation effort for
training mask r-cnn on a broccoli dataset with visually similar classes.
Computers and Electronics in Agriculture, 197:106917, 2022.

A. Blum and S. Chawla. Learning from labeled and unlabeled data using
graph mincuts. 2001.

A. Blum and T. Mitchell. Combining labeled and unlabeled data with
co-training. In Proceedings of the eleventh annual conference on
Computational learning theory, pages 92–100, 1998.

E. Bollis, H. Pedrini, and S. Avila. Weakly supervised learning guided
by activation mapping applied to a novel citrus pest benchmark. In
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition Workshops, pages 70–71, 2020.

E. Bollis, H. Maia, H. Pedrini, and S. Avila. Weakly supervised attention-
based models using activation maps for citrus mite and insect pest
classification. Computers and Electronics in Agriculture, 195:106839,

Li et al.: Preprint submitted to Elsevier Page 27 of 34

https://doi.org/10.1007/10_2016_51


A Systematic Review on Label-Efficient Learning in Agriculture

2022.
L. Boominathan, S. S. Kruthiventi, and R. V. Babu. Crowdnet: A deep

convolutional network for dense crowd counting. In Proceedings of
the 24th ACM international conference on Multimedia, pages 640–644,
2016.

K. Bousmalis, N. Silberman, D. Dohan, D. Erhan, and D. Krishnan.
Unsupervised pixel-level domain adaptation with generative adversarial
networks. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 3722–3731, 2017.

C. Bucila, R. Caruana, and A. Niculescu-Mizil. Model compression: mak-
ing big, slow models practical. In Proceedings of the 12th International
Conference on Knowledge Discovery and Data Mining, pages 535–541.

H. Caesar, J. Uijlings, and V. Ferrari. Coco-stuff: Thing and stuff classes in
context. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 1209–1218, 2018.

X. Cai, F. Nie, W. Cai, and H. Huang. Heterogeneous image features
integration via multi-modal semi-supervised learning model. In Pro-
ceedings of the IEEE International Conference on Computer Vision,
pages 1737–1744, 2013.

M.-A. Carbonneau, V. Cheplygina, E. Granger, and G. Gagnon. Multiple
instance learning: A survey of problem characteristics and applications.
Pattern Recognition, 77:329–353, 2018.

M. Caron, P. Bojanowski, A. Joulin, and M. Douze. Deep clustering for
unsupervised learning of visual features. In Proceedings of the European
conference on computer vision (ECCV), pages 132–149, 2018.

M. Caron, I. Misra, J. Mairal, P. Goyal, P. Bojanowski, and A. Joulin.
Unsupervised learning of visual features by contrasting cluster assign-
ments. Advances in Neural Information Processing Systems, 33:9912–
9924, 2020.

M. Caron, H. Touvron, I. Misra, H. Jégou, J. Mairal, P. Bojanowski, and
A. Joulin. Emerging properties in self-supervised vision transformers.
In Proceedings of the IEEE/CVF international conference on computer
vision, pages 9650–9660, 2021.

A. Casado-García, J. Heras, A. Milella, and R. Marani. Semi-supervised
deep learning and low-cost cameras for the semantic segmentation of
natural images in viticulture. Precision Agriculture, pages 1–26, 2022.

A. L. Chandra, S. V. Desai, V. N. Balasubramanian, S. Ninomiya, and
W. Guo. Active learning with point supervision for cost-effective panicle
detection in cereal crops. Plant Methods, 16(1):1–16, 2020.

O. Chapelle, V. Sindhwani, and S. S. Keerthi. Optimization techniques for
semi-supervised support vector machines. Journal of Machine Learning
Research, 9(2), 2008.

A. Chattopadhay, A. Sarkar, P. Howlader, and V. N. Balasubramanian.
Grad-cam++: Generalized gradient-based visual explanations for deep
convolutional networks. In 2018 IEEE winter conference on applica-
tions of computer vision (WACV), pages 839–847. IEEE, 2018.

S. Chaudhari, V. Mithal, G. Polatkan, and R. Ramanath. An attentive
survey of attention models. ACM Transactions on Intelligent Systems
and Technology (TIST), 12(5):1–32, 2021.

N. Chebrolu, P. Lottes, A. Schaefer, W. Winterhalter, W. Burgard, and
C. Stachniss. Agricultural robot dataset for plant classification, local-
ization and mapping on sugar beet fields. The International Journal of
Robotics Research, 36(10):1045–1052, 2017.

D. Chen, Y. Lu, Z. Li, and S. Young. Performance evaluation of deep
transfer learning on multi-class identification of common weed species
in cotton production systems. Computers and Electronics in Agriculture,
198:107091, 2022a.

D. Chen, X. Qi, Y. Zheng, Y. Lu, and Z. Li. Deep data augmentation
for weed recognition enhancement: A diffusion probabilistic model and
transfer learning based approach. arXiv preprint arXiv:2210.09509,
2022b.

K. Chen, J. Wang, W. Li, W. Li, and Y. Zhao. Simulated feed-
back mechanism-based rotary kiln burning state cognition intelligence
method. IEEE Access, 5:4458–4469, 2017.

L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam. Encoder-
decoder with atrous separable convolution for semantic image segmen-
tation. In Proceedings of the European conference on computer vision
(ECCV), pages 801–818, 2018.

T. Chen, S. Kornblith, M. Norouzi, and G. Hinton. A simple framework
for contrastive learning of visual representations. In International
conference on machine learning, pages 1597–1607. PMLR, 2020a.

X. Chen and K. He. Exploring simple siamese representation learning.
In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 15750–15758, 2021.

Y. Chen, X. Zhu, W. Li, and S. Gong. Semi-supervised learning under
class distribution mismatch. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 34, pages 3569–3576, 2020b.

Y. Chen, M. Mancini, X. Zhu, and Z. Akata. Semi-supervised and
unsupervised deep visual learning: A survey. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2022c.

Y.-R. Chen, K. Chao, and M. S. Kim. Machine vision technology for
agricultural applications. Computers and Electronics in Agriculture,
36(2):173–191, 2002. ISSN 0168-1699. doi: https://doi.org/10.
1016/S0168-1699(02)00100-X. URL https://www.sciencedirect.com/

science/article/pii/S016816990200100X.
D. Chicco. Siamese neural networks: An overview. Artificial Neural

Networks, pages 73–94, 2021.
M. T. Chiu, X. Xu, Y. Wei, Z. Huang, A. G. Schwing, R. Brunner,

H. Khachatrian, H. Karapetyan, I. Dozier, G. Rose, et al. Agriculture-
vision: A large aerial image database for agricultural pattern analysis.
In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 2828–2838, 2020.

H. Cholakkal, G. Sun, S. Khan, F. S. Khan, L. Shao, and L. Van Gool. To-
wards partial supervision for generic object counting in natural scenes.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020.

Y. Chong, Y. Ding, Q. Yan, and S. Pan. Graph-based semi-supervised
learning: A review. Neurocomputing, 408:216–230, 2020.

P. Chu, Z. Li, K. Lammers, R. Lu, and X. Liu. Deep learning-based apple
detection using a suppression mask r-cnn. Pattern Recognition Letters,
147:206–211, 2021.

P. Chu, Z. Li, K. Zhang, D. Chen, K. Lammers, and R. Lu. O2rnet:
Occluder-occludee relational network for robust apple detection in clus-
tered orchard environments. arXiv preprint arXiv:2303.04884, 2023.

T. A. Ciarfuglia, I. M. Motoi, L. Saraceni, M. Fawakherji, A. Sanfeliu,
and D. Nardi. Weakly and semi-supervised detection, segmentation and
tracking of table grapes with limited and noisy data. Computers and
Electronics in Agriculture, 205:107624, 2023.

G. R. Coleman, A. Bender, K. Hu, S. M. Sharpe, A. W. Schumann, Z. Wang,
M. V. Bagavathiannan, N. S. Boyd, and M. J. Walsh. Weed detection to
weed recognition: reviewing 50 years of research to identify constraints
and opportunities for large-scale cropping systems. Weed Technology,
pages 1–50.

G. R. Coleman, A. Stead, M. P. Rigter, Z. Xu, D. Johnson, G. M. Brooker,
S. Sukkarieh, and M. J. Walsh. Using energy requirements to compare
the suitability of alternative methods for broadcast and site-specific weed
control. Weed Technology, 33(4):633–650, 2019.

L. F. Coletta, M. Ponti, E. R. Hruschka, A. Acharya, and J. Ghosh.
Combining clustering and active learning for the detection and learning
of new image classes. Neurocomputing, 358:150–165, 2019.

L. F. Coletta, D. C. de Almeida, J. R. Souza, and R. L. Manzione. Novelty
detection in uav images to identify emerging threats in eucalyptus crops.
Computers and Electronics in Agriculture, 196:106901, 2022.

J. A. Cruz, X. Yin, X. Liu, S. M. Imran, D. D. Morris, D. M. Kramer,
and J. Chen. Multi-modality imagery database for plant phenotyping.
Machine Vision and Applications, 27(5):735–749, 2016.

S. Dandrifosse, E. Ennadifi, A. Carlier, B. Gosselin, B. Dumont, and
B. Mercatoris. Deep learning for wheat ear segmentation and ear density
measurement: From heading to maturity. Computers and Electronics in
Agriculture, 199:107161, 2022.

F. Dang, D. Chen, Y. Lu, and Z. Li. Yoloweeds: A novel benchmark of
yolo object detectors for multi-class weed detection in cotton production
systems. Computers and Electronics in Agriculture, 205:107655, 2023.

S. Das Choudhury, A. Samal, and T. Awada. Leveraging image analysis for
high-throughput plant phenotyping. Frontiers in plant science, 10:508,
2019.

Li et al.: Preprint submitted to Elsevier Page 28 of 34

https://www.sciencedirect.com/science/article/pii/S016816990200100X
https://www.sciencedirect.com/science/article/pii/S016816990200100X


A Systematic Review on Label-Efficient Learning in Agriculture

E. David, S. Madec, P. Sadeghi-Tehran, H. Aasen, B. Zheng, S. Liu,
N. Kirchgessner, G. Ishikawa, K. Nagasawa, M. A. Badhon, et al. Global
wheat head detection (gwhd) dataset: a large and diverse dataset of high-
resolution rgb-labelled images to develop and benchmark wheat head
detection methods. Plant Phenomics, 2020, 2020.

E. David, M. Serouart, D. Smith, S. Madec, K. Velumani, S. Liu, X. Wang,
F. Pinto, S. Shafiee, I. S. Tahir, et al. Global wheat head detection 2021:
An improved dataset for benchmarking wheat head detection methods.
Plant Phenomics, 2021.

C. A. R. de Sousa, S. O. Rezende, and G. E. Batista. Influence of
graph construction on semi-supervised learning. In Machine Learning
and Knowledge Discovery in Databases: European Conference, ECML
PKDD 2013, Prague, Czech Republic, September 23-27, 2013, Proceed-
ings, Part III 13, pages 160–175. Springer, 2013.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A
large-scale hierarchical image database. In 2009 IEEE conference on
computer vision and pattern recognition, pages 248–255. Ieee, 2009.

L. Deng. The mnist database of handwritten digit images for machine
learning research. IEEE Signal Processing Magazine, 29(6):141–142,
2012.

S. V. Desai, V. N. Balasubramanian, T. Fukatsu, S. Ninomiya, and W. Guo.
Automatic estimation of heading date of paddy rice using deep learning.
Plant Methods, 15(1):1–11, 2019.

V. S. Dhaka, S. V. Meena, G. Rani, D. Sinwar, M. F. Ijaz, M. Woźniak, et al.
A survey of deep convolutional neural networks applied for prediction
of plant leaf diseases. Sensors, 21(14):4749, 2021.

I. S. Dhillon, Y. Guan, and B. Kulis. A unified view of kernel k-means,
spectral clustering and graph cuts. Citeseer, 2004.

P. A. Dias and H. Medeiros. Semantic segmentation refinement by monte
carlo region growing of high confidence detections. In Asian Conference
on Computer Vision, pages 131–146. Springer, 2018.

P. A. Dias, A. Tabb, and H. Medeiros. Multispecies fruit flower detection
using a refined semantic segmentation network. IEEE robotics and
automation letters, 3(4):3003–3010, 2018.

X. Dong, Z. Yu, W. Cao, Y. Shi, and Q. Ma. A survey on ensemble learning.
Frontiers of Computer Science, 14:241–258, 2020.

A. dos Santos Ferreira, D. M. Freitas, G. G. da Silva, H. Pistori, and M. T.
Folhes. Weed detection in soybean crops using convnets. Computers
and Electronics in Agriculture, 143:314–324, 2017.

A. dos Santos Ferreira, D. M. Freitas, G. G. da Silva, H. Pistori, and M. T.
Folhes. Unsupervised deep learning and semi-automatic data labeling
in weed discrimination. Computers and Electronics in Agriculture, 165:
104963, 2019.

A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Un-
terthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at
scale. arXiv preprint arXiv:2010.11929, 2020.

J. G. Esgario, R. A. Krohling, and J. A. Ventura. Deep learning for classi-
fication and severity estimation of coffee leaf biotic stress. Computers
and Electronics in Agriculture, 169:105162, 2020.

X. Fan, P. Luo, Y. Mu, R. Zhou, T. Tjahjadi, and Y. Ren. Leaf image based
plant disease identification using transfer learning and feature fusion.
Computers and Electronics in Agriculture, 196:106892, 2022.

U. Fang, J. Li, X. Lu, L. Gao, M. Ali, and Y. Xiang. Self-supervised cross-
iterative clustering for unlabeled plant disease images. Neurocomputing,
456:36–48, 2021.

G. Farjon, O. Krikeb, A. B. Hillel, and V. Alchanatis. Detection and
counting of flowers on apple trees for better chemical thinning decisions.
Precision Agriculture, 21(3):503–521, 2020.

T. Fatima and T. Mahmood. Semi-supervised learning in smart agriculture:
A systematic literature review. In 2021 6th International Multi-Topic
ICT Conference (IMTIC), pages 1–8. IEEE, 2021.

D. Fontanel, M. Tarantino, F. Cermelli, and B. Caputo. Detecting the
unknown in object detection. arXiv preprint arXiv:2208.11641, 2022.

M. Føre, K. Frank, T. Norton, E. Svendsen, J. A. Alfredsen, T. Dempster,
H. Eguiraun, W. Watson, A. Stahl, L. M. Sunde, et al. Precision
fish farming: A new framework to improve production in aquaculture.
biosystems engineering, 173:176–193, 2018.

J. Foulds and E. Frank. A review of multi-instance learning assumptions.
The knowledge engineering review, 25(1):1–25, 2010.

F. Fourati, W. S. Mseddi, and R. Attia. Wheat head detection using deep,
semi-supervised and ensemble learning. Canadian Journal of Remote
Sensing, 47(2):198–208, 2021.

R. T. Furbank and M. Tester. Phenomics–technologies to relieve the
phenotyping bottleneck. Trends in plant science, 16(12):635–644, 2011.

Y. Gal and Z. Ghahramani. Bayesian convolutional neural networks
with bernoulli approximate variational inference. arXiv preprint
arXiv:1506.02158, 2015.

Y. Gal, R. Islam, and Z. Ghahramani. Deep bayesian active learning with
image data. In International conference on machine learning, pages
1183–1192. PMLR, 2017.

Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette,
M. Marchand, and V. Lempitsky. Domain-adversarial training of neural
networks. The journal of machine learning research, 17(1):2096–2030,
2016.

Y. Geifman and R. El-Yaniv. Deep active learning with a neural architecture
search. Advances in Neural Information Processing Systems, 32, 2019.

J. Gené-Mola, V. Vilaplana, J. R. Rosell-Polo, J.-R. Morros, J. Ruiz-
Hidalgo, and E. Gregorio. Multi-modal deep learning for fuji apple
detection using rgb-d cameras and their radiometric capabilities. Com-
puters and Electronics in Agriculture, 162:689–698, 2019.

S. Ghosal, B. Zheng, S. C. Chapman, A. B. Potgieter, D. R. Jordan, X. Wang,
A. K. Singh, A. Singh, M. Hirafuji, S. Ninomiya, et al. A weakly
supervised deep learning framework for sorghum head detection and
counting. Plant Phenomics, 2019, 2019.

M. V. Giuffrida, A. Dobrescu, P. Doerner, and S. A. Tsaftaris. Leaf
counting without annotations using adversarial unsupervised domain
adaptation. In 2019 IEEE/CVF Conference on Computer Vision and
Pattern Recognition Workshops (CVPRW), pages 2590–2599. IEEE,
2019.

H. Goëau, P. Bonnet, and A. Joly. Overview of plantclef 2022: Image-based
plant identification at global scale. In CLEF 2022-Conference and Labs
of the Evaluation Forum, volume 3180, pages 1916–1928, 2022.

K. C. Gowda and G. Krishna. Agglomerative clustering using the concept
of mutual nearest neighbourhood. Pattern recognition, 10(2):105–112,
1978.

J.-B. Grill, F. Strub, F. Altché, C. Tallec, P. Richemond, E. Buchatskaya,
C. Doersch, B. Avila Pires, Z. Guo, M. Gheshlaghi Azar, et al. Bootstrap
your own latent-a new approach to self-supervised learning. Advances
in neural information processing systems, 33:21271–21284, 2020.

P. Grünwald. Minimum description length tutorial. Advances in minimum
description length: Theory and applications, 5:1–80, 2005.

R. Güldenring and L. Nalpantidis. Self-supervised contrastive learning on
agricultural images. Computers and Electronics in Agriculture, 191:
106510, 2021.

L.-Z. Guo, Z.-Y. Zhang, Y. Jiang, Y.-F. Li, and Z.-H. Zhou. Safe deep semi-
supervised learning for unseen-class unlabeled data. In International
Conference on Machine Learning, pages 3897–3906. PMLR, 2020.

W. Guo, B. Zheng, A. B. Potgieter, J. Diot, K. Watanabe, K. Noshita, D. R.
Jordan, X. Wang, J. Watson, S. Ninomiya, et al. Aerial imagery analysis–
quantifying appearance and number of sorghum heads for applications
in breeding and agronomy. Frontiers in plant science, page 1544, 2018.

J. A. Hartigan and M. A. Wong. Algorithm as 136: A k-means clustering
algorithm. Journal of the royal statistical society. series c (applied
statistics), 28(1):100–108, 1979.

S. Haug and J. Ostermann. A crop/weed field image dataset for the
evaluation of computer vision based precision agriculture tasks. In
European conference on computer vision, pages 105–116. Springer,
2014.

M. Haussmann, F. A. Hamprecht, and M. Kandemir. Deep active learning
with adaptive acquisition. arXiv preprint arXiv:1906.11471, 2019.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, 2016.

Li et al.: Preprint submitted to Elsevier Page 29 of 34



A Systematic Review on Label-Efficient Learning in Agriculture

K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask r-cnn. In Proceedings
of the IEEE international conference on computer vision, pages 2961–
2969, 2017.

G. Hinton, O. Vinyals, J. Dean, et al. Distilling the knowledge in a neural
network. arXiv preprint arXiv:1503.02531, 2(7), 2015.

N. Houlsby, F. Huszár, Z. Ghahramani, and M. Lengyel. Bayesian active
learning for classification and preference learning. arXiv preprint
arXiv:1112.5745, 2011.

C. Hu, J. A. Thomasson, and M. V. Bagavathiannan. A powerful image
synthesis and semi-supervised learning pipeline for site-specific weed
detection. Computers and Electronics in Agriculture, 190:106423, 2021.

D. Hu, F. Nie, and X. Li. Deep multimodal clustering for unsupervised
audiovisual learning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 9248–9257, 2019.

G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger. Densely con-
nected convolutional networks. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 4700–4708, 2017.

D. Hughes, M. Salathé, et al. An open access repository of images on plant
health to enable the development of mobile disease diagnostics. arXiv
preprint arXiv:1511.08060, 2015.

M. Ilse, J. Tomczak, and M. Welling. Attention-based deep multiple
instance learning. In International conference on machine learning,
pages 2127–2136. PMLR, 2018.

P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-to-image translation
with conditional adversarial networks. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 1125–
1134, 2017.

T. Jebara, J. Wang, and S.-F. Chang. Graph construction and b-matching
for semi-supervised learning. In Proceedings of the 26th annual inter-
national conference on machine learning, pages 441–448, 2009.

Z. Jianmin, L. Jingtao, Z. Dongting, and H. Zhiwen. Spherical fruit
automatic recognition method based on grey relational analysis and
fuzzy membership degree matching. Chin. J. Sci. Instrum, 33:1826–36,
2012.

L. Jing and Y. Tian. Self-supervised visual feature learning with deep neural
networks: A survey. IEEE transactions on pattern analysis and machine
intelligence, 43(11):4037–4058, 2020.

T. Joachims et al. Transductive inference for text classification using
support vector machines. In Icml, volume 99, pages 200–209, 1999.

G. Jocher, K. Nishimura, T. Mineeva, and R. Vilariño. yolov5. Code
repository https://github. com/ultralytics/yolov5, 2020.

L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement learning:
A survey. Journal of artificial intelligence research, 4:237–285, 1996.

A. Kamilaris and F. X. Prenafeta-Boldú. Deep learning in agriculture: A
survey. Computers and electronics in agriculture, 147:70–90, 2018.

A. Kanezaki. Unsupervised image segmentation by backpropagation. In
2018 IEEE international conference on acoustics, speech and signal
processing (ICASSP), pages 1543–1547. IEEE, 2018.

S. Khaki, H. Pham, Y. Han, A. Kuhl, W. Kent, and L. Wang. Deepcorn: A
semi-supervised deep learning method for high-throughput image-based
corn kernel counting and yield estimation. Knowledge-Based Systems,
218:106874, 2021.

T. Kim, H. Kim, K. Baik, and Y. Choi. Instance-aware plant disease
detection by utilizing saliency map and self-supervised pre-training.
Agriculture, 12(8):1084, 2022.

W.-S. Kim, D.-H. Lee, and Y.-J. Kim. Machine vision-based automatic
disease symptom detection of onion downy mildew. Computers and
Electronics in Agriculture, 168:105099, 2020.

W.-S. Kim, D.-H. Lee, T. Kim, H. Kim, T. Sim, and Y.-J. Kim. Weakly su-
pervised crop area segmentation for an autonomous combine harvester.
Sensors, 21(14):4801, 2021.

A. Kirillov, R. Girshick, K. He, and P. Dollár. Panoptic feature pyramid
networks. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 6399–6408, 2019.

I. Kobyzev, S. J. Prince, and M. A. Brubaker. Normalizing flows: An
introduction and review of current methods. IEEE transactions on
pattern analysis and machine intelligence, 43(11):3964–3979, 2020.

A. Koirala, K. B. Walsh, Z. Wang, and C. McCarthy. Deep learning–method
overview and review of use for fruit detection and yield estimation.
Computers and electronics in agriculture, 162:219–234, 2019.

Q. Kong, R. Du, Q. Duan, Y. Zhang, Y. Chen, D. Li, C. Xu, W. Li, and
C. Liu. A recurrent network based on active learning for the assessment
of fish feeding status. Computers and Electronics in Agriculture, 198:
106979, 2022.

P. Krähenbühl and V. Koltun. Efficient inference in fully connected crfs with
gaussian edge potentials. Advances in neural information processing
systems, 24, 2011.

A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with
deep convolutional neural networks. Communications of the ACM, 60
(6):84–90, 2017.

N. Kumar, P. N. Belhumeur, A. Biswas, D. W. Jacobs, W. J. Kress, I. C.
Lopez, and J. V. Soares. Leafsnap: A computer vision system for
automatic plant species identification. In European conference on
computer vision, pages 502–516. Springer, 2012.

Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. nature, 521(7553):
436–444, 2015.

D.-H. Lee et al. Pseudo-label: The simple and efficient semi-supervised
learning method for deep neural networks. In Workshop on challenges
in representation learning, ICML, volume 3, page 896, 2013.

K. Lee, K. Lee, J. Shin, and H. Lee. Overcoming catastrophic forgetting
with unlabeled data in the wild. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 312–321, 2019.

D. D. Lewis. A sequential algorithm for training text classifiers: Corrigen-
dum and additional data. In Acm Sigir Forum, volume 29, pages 13–19.
ACM New York, NY, USA, 1995.

D. D. Lewis and J. Catlett. Heterogeneous uncertainty sampling for
supervised learning. In Machine learning proceedings 1994, pages 148–
156. Elsevier, 1994.

D. Li, Z. Miao, F. Peng, L. Wang, Y. Hao, Z. Wang, T. Chen, H. Li,
and Y. Zheng. Automatic counting methods in aquaculture: A review.
Journal of the World Aquaculture Society, 52(2):269–283, 2021.

L. Li, W. Hu, J. Lu, and C. Zhang. Leaf vein segmentation with self-
supervision. Computers and Electronics in Agriculture, 203:107352,
2022.

W. Li, Z. Cao, C. Zhu, K. Chen, J. Wang, X. Liu, and C. Zheng. Intelligent
feedback cognition of greengage grade based on deep ensemble learning.
Transactions of the Chinese Society of Agricultural Engineering, 33(23):
276–283, 2017.

W. Li, H. Tao, H. Li, K. Chen, and J. Wang. Greengage grading using
stochastic configuration networks and a semi-supervised feedback mech-
anism. Information Sciences, 488:1–12, 2019.

Y. Li and X. Chao. Semi-supervised few-shot learning approach for plant
diseases recognition. Plant Methods, 17(1):1–10, 2021.

Y. Li, J. Zhang, P. Gao, L. Jiang, and M. Chen. Grab cut image segmentation
based on image region. In 2018 IEEE 3rd international conference on
image, vision and computing (ICIVC), pages 311–315. IEEE, 2018.

Y.-F. Li, I. W. Tsang, J. T. Kwok, and Z.-H. Zhou. Convex and scalable
weakly labeled svms. Journal of Machine Learning Research, 14(7),
2013.

T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár,
and C. L. Zitnick. Microsoft coco: Common objects in context. In
European conference on computer vision, pages 740–755. Springer,
2014.

T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie.
Feature pyramid networks for object detection. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages
2117–2125, 2017a.

T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár. Focal loss for dense
object detection. In Proceedings of the IEEE international conference
on computer vision, pages 2980–2988, 2017b.

X. Lin, C.-T. Li, S. Adams, A. Kouzani, R. Jiang, L. He, Y. Hu, M. Vernon,
E. Doeven, L. Webb, et al. Self-supervised leaf segmentation under
complex lighting conditions. Pattern Recognition, page 109021, 2022.

W. Liu, J. Wang, and S.-F. Chang. Robust and scalable graph-based
semisupervised learning. Proceedings of the IEEE, 100(9):2624–2638,

Li et al.: Preprint submitted to Elsevier Page 30 of 34



A Systematic Review on Label-Efficient Learning in Agriculture

2012.
W. Liu, K. Quijano, and M. M. Crawford. Yolov5-tassel: detecting tassels in

rgb uav imagery with improved yolov5 based on transfer learning. IEEE
Journal of Selected Topics in Applied Earth Observations and Remote
Sensing, 15:8085–8094, 2022a.

X. Liu, M. Song, D. Tao, Z. Liu, L. Zhang, C. Chen, and J. Bu. Random
forest construction with robust semisupervised node splitting. IEEE
Transactions on Image Processing, 24(1):471–483, 2014.

X. Liu, F. Zhang, Z. Hou, L. Mian, Z. Wang, J. Zhang, and J. Tang. Self-
supervised learning: Generative or contrastive. IEEE Transactions on
Knowledge and Data Engineering, 35(1):857–876, 2021a.

Y. Liu, S. Zhou, H. Wu, W. Han, C. Li, and H. Chen. Joint optimization
of autoencoder and self-supervised classifier: Anomaly detection of
strawberries using hyperspectral imaging. Computers and Electronics
in Agriculture, 198:107007, 2022b.

Y.-C. Liu, C.-Y. Ma, Z. He, C.-W. Kuo, K. Chen, P. Zhang, B. Wu, Z. Kira,
and P. Vajda. Unbiased teacher for semi-supervised object detection.
In International Conference on Learning Representations, 2021b. URL
https://openreview.net/forum?id=MJIve1zgR_.

Y.-C. Liu, C.-Y. Ma, X. Dai, J. Tian, P. Vajda, Z. He, and Z. Kira. Open-
set semi-supervised object detection. In Computer Vision–ECCV 2022:
17th European Conference, Tel Aviv, Israel, October 23–27, 2022,
Proceedings, Part XXX, pages 143–159. Springer, 2022c.

J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for
semantic segmentation. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 3431–3440, 2015.

D. G. Lowe. Object recognition from local scale-invariant features. In
Proceedings of the seventh IEEE international conference on computer
vision, volume 2, pages 1150–1157. Ieee, 1999.

J. Lu, J. Hu, G. Zhao, F. Mei, and C. Zhang. An in-field automatic wheat
disease diagnosis system. Computers and electronics in agriculture,
142:369–379, 2017.

Y. Lu, W. Saeys, M. Kim, Y. Peng, and R. Lu. Hyperspectral imaging
technology for quality and safety evaluation of horticultural products:
A review and celebration of the past 20-year progress. Postharvest
Biology and Technology, 170:111318, 2020. ISSN 0925-5214. doi:
https://doi.org/10.1016/j.postharvbio.2020.111318. URL https://www.

sciencedirect.com/science/article/pii/S0925521420308905.
Y. Lu, D. Chen, E. Olaniyi, and Y. Huang. Generative adversarial networks

(gans) for image augmentation in agriculture: A systematic review.
Computers and Electronics in Agriculture, 200:107208, 2022.

S. Madec, X. Jin, H. Lu, B. De Solan, S. Liu, F. Duyme, E. Heritier, and
F. Baret. Ear density estimation from high resolution rgb imagery using
deep learning technique. Agricultural and forest meteorology, 264:225–
234, 2019.

P. Maheswari, P. Raja, O. E. Apolo-Apolo, and M. Pérez-Ruiz. Intelligent
fruit yield estimation for orchards using deep learning based semantic
segmentation techniques—a review. Frontiers in Plant Science, 12:
1247, 2021.

A.-K. Mahlein, M. T. Kuska, J. Behmann, G. Polder, and A. Walter.
Hyperspectral sensors and imaging technologies in phytopathology:
state of the art. Annual review of phytopathology, 56:535–558, 2018.

M. Maier, U. Luxburg, and M. Hein. Influence of graph construction
on graph-based clustering measures. Advances in neural information
processing systems, 21, 2008.

S. Marino, P. Beauseroy, and A. Smolarz. Weakly-supervised learning
approach for potato defects segmentation. Engineering Applications of
Artificial Intelligence, 85:337–346, 2019.

M. Marszalek, M. Körner, and U. Schmidhalter. Prediction of multi-year
winter wheat yields at the field level with satellite and climatological
data. Computers and Electronics in Agriculture, 194:106777, 2022a.

M. L. Marszalek, B. Le Saux, P.-P. Mathieu, A. Nowakowski, and
D. Springer. Self-supervised learning – a way to minimize
time and effort for precision agriculture? The International
Archives of the Photogrammetry, Remote Sensing and Spatial
Information Sciences, XLIII-B3-2022:1327–1333, 2022b. doi:
10.5194/isprs-archives-XLIII-B3-2022-1327-2022. URL
https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.

net/XLIII-B3-2022/1327/2022/.
M. McCloskey and N. J. Cohen. Catastrophic interference in connectionist

networks: The sequential learning problem. In Psychology of learning
and motivation, volume 24, pages 109–165. Elsevier, 1989.

E. Min, X. Guo, Q. Liu, G. Zhang, J. Cui, and J. Long. A survey of clustering
with deep learning: From the perspective of network architecture. IEEE
Access, 6:39501–39514, 2018.

M. Minervini, H. Scharr, and S. A. Tsaftaris. Image analysis: the new
bottleneck in plant phenotyping [applications corner]. IEEE signal
processing magazine, 32(4):126–131, 2015.

M. Minervini, A. Fischbach, H. Scharr, and S. A. Tsaftaris. Finely-
grained annotated datasets for image-based plant phenotyping. Pattern
recognition letters, 81:80–89, 2016.

D. Moher, A. Liberati, J. Tetzlaff, D. G. Altman, and P. Group*. Preferred
reporting items for systematic reviews and meta-analyses: the prisma
statement. Annals of internal medicine, 151(4):264–269, 2009.

M. M. Monowar, M. Hamid, F. A. Kateb, A. Q. Ohi, M. Mridha, et al. Self-
supervised clustering for leaf disease identification. Agriculture, 12(6):
814, 2022.

A. Monteiro, S. Santos, and P. Gonçalves. Precision agriculture for crop
and livestock farming—brief review. Animals, 11(8):2345, 2021.

D. Morrison, A. Milan, and E. Antonakos. Uncertainty-aware instance seg-
mentation using dropout sampling. In Proceedings of the Robotic Vision
Probabilistic Object Detection Challenge (CVPR 2019 Workshop), Long
Beach, CA, USA, pages 16–20, 2019.

V. Moysiadis, P. Sarigiannidis, V. Vitsas, and A. Khelifi. Smart farming in
europe. Computer science review, 39:100345, 2021.

K. Najafian, A. Ghanbari, I. Stavness, L. Jin, G. H. Shirdel, and F. Maleki. A
semi-self-supervised learning approach for wheat head detection using
extremely small number of labeled samples. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 1342–
1351, 2021.

C. Nong, X. Fan, and J. Wang. Semi-supervised learning for weed and crop
segmentation using uav imagery. Frontiers in Plant Science, 13, 2022.

M. Noroozi, A. Vinjimoor, P. Favaro, and H. Pirsiavash. Boosting self-
supervised learning via knowledge transfer. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 9359–
9367, 2018.

A. Q. Ohi, M. F. Mridha, F. B. Safir, M. A. Hamid, and M. M. Monowar.
Autoembedder: A semi-supervised dnn embedding system for cluster-
ing. Knowledge-Based Systems, 204:106190, 2020.

A. Olsen, D. A. Konovalov, B. Philippa, P. Ridd, J. C. Wood, J. Johns,
W. Banks, B. Girgenti, O. Kenny, J. Whinney, et al. Deepweeds: A
multiclass weed species image dataset for deep learning. Scientific
reports, 9(1):1–12, 2019.

N. Otsu. A threshold selection method from gray-level histograms. IEEE
transactions on systems, man, and cybernetics, 9(1):62–66, 1979.

J. P. Papa, A. X. Falcão, V. H. C. De Albuquerque, and J. M. R. Tavares.
Efficient supervised optimum-path forest classification for large datasets.
Pattern Recognition, 45(1):512–520, 2012.

D. P. Papadopoulos, J. R. Uijlings, F. Keller, and V. Ferrari. Training
object class detectors with click supervision. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 6374–
6383, 2017.

M. Pérez-Ortiz, J. Peña, P. A. Gutiérrez, J. Torres-Sánchez, C. Hervás-
Martínez, and F. López-Granados. A semi-supervised system for weed
mapping in sunflower crops using unmanned aerial vehicles and a crop
row detection method. Applied Soft Computing, 37:533–544, 2015.

D. Petti and C. Li. Weakly-supervised learning to automatically count
cotton flowers from aerial imagery. Computers and Electronics in
Agriculture, 194:106734, 2022.

G.-J. Qi and J. Luo. Small data challenges in big data era: A survey of
recent progress on unsupervised and semi-supervised methods. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 44(4):2168–
2187, 2020.

Z. Qiang, J. Shi, and F. Shi. Phenotype tracking of leafy greens based on
weakly supervised instance segmentation and data association. Agron-
omy, 12(7):1567, 2022.

Li et al.: Preprint submitted to Elsevier Page 31 of 34

https://openreview.net/forum?id=MJIve1zgR_
https://www.sciencedirect.com/science/article/pii/S0925521420308905
https://www.sciencedirect.com/science/article/pii/S0925521420308905
https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLIII-B3-2022/1327/2022/
https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLIII-B3-2022/1327/2022/


A Systematic Review on Label-Efficient Learning in Agriculture

D. Rao, F. Visin, A. Rusu, R. Pascanu, Y. W. Teh, and R. Hadsell. Continual
unsupervised representation learning. Advances in Neural Information
Processing Systems, 32, 2019.

H. T. Rauf, B. A. Saleem, M. I. U. Lali, M. A. Khan, M. Sharif, and S. A. C.
Bukhari. A citrus fruits and leaves dataset for detection and classification
of citrus diseases through machine learning. Data in brief, 26:104340,
2019.

S. Rawat, A. L. Chandra, S. V. Desai, V. N. Balasubramanian, S. Ninomiya,
and W. Guo. How useful is image-based active learning for plant organ
segmentation? Plant Phenomics, 2022, 2022.

J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look
once: Unified, real-time object detection. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 779–788,
2016.

P. Ren, Y. Xiao, X. Chang, P.-Y. Huang, Z. Li, X. Chen, and X. Wang.
A comprehensive survey of neural architecture search: Challenges and
solutions. ACM Computing Surveys (CSUR), 54(4):1–34, 2021a.

P. Ren, Y. Xiao, X. Chang, P.-Y. Huang, Z. Li, B. B. Gupta, X. Chen, and
X. Wang. A survey of deep active learning. ACM computing surveys
(CSUR), 54(9):1–40, 2021b.

S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-time
object detection with region proposal networks. Advances in neural
information processing systems, 28, 2015.

O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks
for biomedical image segmentation. In International Conference on
Medical image computing and computer-assisted intervention, pages
234–241. Springer, 2015.

C. Rother, V. Kolmogorov, and A. Blake. " grabcut" interactive foreground
extraction using iterated graph cuts. ACM transactions on graphics
(TOG), 23(3):309–314, 2004.

P. Roy, A. Kislay, P. A. Plonski, J. Luby, and V. Isler. Vision-based
preharvest yield mapping for apple orchards. Computers and Electronics
in Agriculture, 164:104897, 2019.

I. Sa, M. Popović, R. Khanna, Z. Chen, P. Lottes, F. Liebisch, J. Nieto,
C. Stachniss, A. Walter, and R. Siegwart. Weedmap: A large-scale
semantic weed mapping framework using aerial multispectral imaging
and deep neural network for precision farming. Remote Sensing, 10(9):
1423, 2018.

K. Saito, Y. Ushiku, and T. Harada. Asymmetric tri-training for unsu-
pervised domain adaptation. In International Conference on Machine
Learning, pages 2988–2997. PMLR, 2017.

M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen. Mo-
bilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages
4510–4520, 2018.

T. T. Santos, L. L. de Souza, A. A. dos Santos, and S. Avila. Grape detec-
tion, segmentation, and tracking using deep neural networks and three-
dimensional association. Computers and Electronics in Agriculture, 170:
105247, 2020.

H. Scharr, M. Minervini, A. Fischbach, and S. A. Tsaftaris. Annotated
image datasets of rosette plants. In European conference on computer
vision. Zürich, Suisse, pages 6–12, 2014.

T. Scheffer, C. Decomain, and S. Wrobel. Active hidden markov models
for information extraction. In Advances in Intelligent Data Analysis:
4th International Conference, IDA 2001 Cascais, Portugal, September
13–15, 2001 Proceedings 4, pages 309–318. Springer, 2001.

L. Schmarje, M. Santarossa, S.-M. Schröder, and R. Koch. A survey on
semi-, self-and unsupervised learning for image classification. IEEE
Access, 9:82146–82168, 2021.

R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Ba-
tra. Grad-cam: Visual explanations from deep networks via gradient-
based localization. In Proceedings of the IEEE international conference
on computer vision, pages 618–626, 2017.

B. Settles. Active learning literature survey. 2009.
B. Seyednasrollah, A. Young, K. Hufkens, T. Milliman, M. Friedl, S. Frol-

king, A. Richardson, M. Abraha, D. Allen, M. Apple, et al. Phenocam
dataset v2. 0: Vegetation phenology from digital camera imagery, 2000-
2018. ORNL DAAC, 2019.

C. E. Shannon. A mathematical theory of communication. ACM SIGMO-
BILE mobile computing and communications review, 5(1):3–55, 2001.

S. Sharma, A. Partap, M. A. d. L. Balaguer, S. Malvar, and R. Chandra.
Deepg2p: Fusing multi-modal data to improve crop production. arXiv
preprint arXiv:2211.05986, 2022.

W. Shen, Z. Peng, X. Wang, H. Wang, J. Cen, D. Jiang, L. Xie, X. Yang,
and Q. Tian. A survey on label-efficient deep segmentation: Bridging
the gap between weak supervision and dense prediction. arXiv preprint
arXiv:2207.01223, 2022.

Z. Shen, Y. Xu, B. Ni, M. Wang, J. Hu, and X. Yang. Crowd counting via
adversarial cross-scale consistency pursuit. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 5245–
5254, 2018.

S. Shorewala, A. Ashfaque, R. Sidharth, and U. Verma. Weed density and
distribution estimation for precision agriculture using semi-supervised
learning. IEEE access, 9:27971–27986, 2021.

A. Siddique, A. Tabb, and H. Medeiros. Self-supervised learning for
panoptic segmentation of multiple fruit flower species. arXiv preprint
arXiv:2209.04618, 2022.

K. Simonyan and A. Zisserman. Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

J. Smith, C. Taylor, S. Baer, and C. Dovrolis. Unsupervised progressive
learning and the stam architecture. arXiv preprint arXiv:1904.02021,
2019.

K. Sohn, D. Berthelot, N. Carlini, Z. Zhang, H. Zhang, C. A. Raffel,
E. D. Cubuk, A. Kurakin, and C.-L. Li. Fixmatch: Simplifying semi-
supervised learning with consistency and confidence. Advances in
neural information processing systems, 33:596–608, 2020.

J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller. Striving for
simplicity: The all convolutional net. arXiv preprint arXiv:1412.6806,
2014.

M. Stein, S. Bargoti, and J. Underwood. Image based mango fruit detection,
localisation and yield estimation using multiple view geometry. Sensors,
16(11):1915, 2016.

D. Steininger, A. Trondl, G. Croonen, J. Simon, and V. Widhalm. The
cropandweed dataset: A multi-modal learning approach for efficient
crop and weed manipulation. In Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision, pages 3729–3738,
2023.

C. Sun, A. Shrivastava, S. Singh, and A. Gupta. Revisiting unreasonable
effectiveness of data in deep learning era. In Proceedings of the IEEE
international conference on computer vision, pages 843–852, 2017.

K. Sun, Y. Zhao, B. Jiang, T. Cheng, B. Xiao, D. Liu, Y. Mu, X. Wang,
W. Liu, and J. Wang. High-resolution representations for labeling pixels
and regions. arXiv preprint arXiv:1904.04514, 2019.

Y. Sun, X. Wang, Z. Liu, J. Miller, A. Efros, and M. Hardt. Test-
time training with self-supervision for generalization under distribution
shifts. In International conference on machine learning, pages 9229–
9248. PMLR, 2020.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions.
In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 1–9, 2015.

C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi. Inception-v4, inception-
resnet and the impact of residual connections on learning. In Proceed-
ings of the AAAI conference on artificial intelligence, volume 31, 2017.

M. Tan, R. Pang, and Q. V. Le. Efficientdet: Scalable and efficient object
detection. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 10781–10790, 2020.

A. Tarvainen and H. Valpola. Mean teachers are better role models: Weight-
averaged consistency targets improve semi-supervised deep learning
results. Advances in neural information processing systems, 30, 2017.

Y. Tian, D. Krishnan, and P. Isola. Contrastive multiview coding. In
Computer Vision–ECCV 2020: 16th European Conference, Glasgow,
UK, August 23–28, 2020, Proceedings, Part XI 16, pages 776–794.
Springer, 2020.

Z. Tian, C. Shen, X. Wang, and H. Chen. Boxinst: High-performance
instance segmentation with box annotations. In Proceedings of the

Li et al.: Preprint submitted to Elsevier Page 32 of 34



A Systematic Review on Label-Efficient Learning in Agriculture

IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 5443–5452, 2021.

A. Tschand. Semi-supervised machine learning analysis of crop color for
autonomous irrigation. Smart Agricultural Technology, 3:100116, 2023.

E. Tzeng, J. Hoffman, K. Saenko, and T. Darrell. Adversarial discriminative
domain adaptation. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 7167–7176, 2017.

H. Uchiyama, S. Sakurai, M. Mishima, D. Arita, T. Okayasu, A. Shimada,
and R.-i. Taniguchi. An easy-to-setup 3d phenotyping platform for
komatsuna dataset. In Proceedings of the IEEE International Conference
on Computer Vision Workshops, pages 2038–2045, 2017.

J. E. Van Engelen and H. H. Hoos. A survey on semi-supervised learning.
Machine Learning, 109(2):373–440, 2020.

V. Vapnik and V. Vapnik. Statistical learning theory wiley. New York, 1
(624):2, 1998.

A. Walter, R. Finger, R. Huber, and N. Buchmann. Smart farming is
key to developing sustainable agriculture. Proceedings of the National
Academy of Sciences, 114(24):6148–6150, 2017.

D. Wang and M. Li. Stochastic configuration networks: Fundamentals and
algorithms. IEEE transactions on cybernetics, 47(10):3466–3479, 2017.

D. Wang, E. Shelhamer, S. Liu, B. Olshausen, and T. Darrell. Tent:
Fully test-time adaptation by entropy minimization. arXiv preprint
arXiv:2006.10726, 2020a.

H. Wang, Z. Wang, M. Du, F. Yang, Z. Zhang, S. Ding, P. Mardziel, and
X. Hu. Score-cam: Score-weighted visual explanations for convolutional
neural networks. In Proceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition workshops, pages 24–25, 2020b.

L. Wang, X. Zhang, H. Su, and J. Zhu. A comprehensive survey of
continual learning: Theory, method and application. arXiv preprint
arXiv:2302.00487, 2023.

Y. Wang and L. Xu. Unsupervised segmentation of greenhouse plant images
based on modified latent dirichlet allocation. PeerJ, 6:e5036, 2018.

Y. Wang, Q. Yao, J. T. Kwok, and L. M. Ni. Generalizing from a few
examples: A survey on few-shot learning. ACM computing surveys
(csur), 53(3):1–34, 2020c.

Y. Wang, J. Peng, and Z. Zhang. Uncertainty-aware pseudo label refinery
for domain adaptive semantic segmentation. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 9092–
9101, 2021.

Y. Wang, H. Wang, Y. Shen, J. Fei, W. Li, G. Jin, L. Wu, R. Zhao, and X. Le.
Semi-supervised semantic segmentation using unreliable pseudo-labels.
In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 4248–4257, 2022.

D. Ward, P. Moghadam, and N. Hudson. Deep leaf segmentation using
synthetic data. arXiv preprint arXiv:1807.10931, 2018.

J. H. Westwood, R. Charudattan, S. O. Duke, S. A. Fennimore, P. Marrone,
D. C. Slaughter, C. Swanton, and R. Zollinger. Weed management in
2050: Perspectives on the future of weed science. Weed science, 66(3):
275–285, 2018.

N. Wojke, A. Bewley, and D. Paulus. Simple online and realtime tracking
with a deep association metric. In 2017 IEEE international conference
on image processing (ICIP), pages 3645–3649. IEEE, 2017.

S. Wolfert, L. Ge, C. Verdouw, and M.-J. Bogaardt. Big data in smart
farming–a review. Agricultural systems, 153:69–80, 2017.

J. Wu, Y. Yu, C. Huang, and K. Yu. Deep multiple instance learning for
image classification and auto-annotation. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 3460–
3469, 2015.

X. Wu, C. Zhan, Y.-K. Lai, M.-M. Cheng, and J. Yang. Ip102: A large-
scale benchmark dataset for insect pest recognition. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition,
pages 8787–8796, 2019.

Y. Wu and L. Xu. Crop organ segmentation and disease identification based
on weakly supervised deep neural network. Agronomy, 9(11):737, 2019.

J. Xie, R. Girshick, and A. Farhadi. Unsupervised deep embedding for
clustering analysis. In International conference on machine learning,
pages 478–487. PMLR, 2016.

Q. Xie, M.-T. Luong, E. Hovy, and Q. V. Le. Self-training with noisy student
improves imagenet classification. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 10687–
10698, 2020.

S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He. Aggregated residual
transformations for deep neural networks. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 1492–
1500, 2017.

M. Xu, S. Yoon, A. Fuentes, J. Yang, and D. S. Park. Style-consistent
image translation: A novel data augmentation paradigm to improve plant
disease recognition. Frontiers in Plant Science, 12:773142–773142,
2021.

M. Xu, S. Yoon, A. Fuentes, J. Yang, and D. S. Park. Style-consistent image
translation: a novel data augmentation paradigm to improve plant disease
recognition. Frontiers in Plant Science, 12:3361, 2022a.

M. Xu, S. Yoon, Y. Jeong, and D. S. Park. Transfer learning for versatile
plant disease recognition with limited data. Frontiers in Plant Science,
13:4506, 2022b.

M. Xu, S. Yoon, A. Fuentes, and D. S. Park. A comprehensive survey of
image augmentation techniques for deep learning. Pattern Recognition,
page 109347, 2023.

J. Yan and X. Wang. Unsupervised and semi-supervised learning: the
next frontier in machine learning for plant systems biology. The Plant
Journal, 2022.

J. Yang, D. Parikh, and D. Batra. Joint unsupervised learning of deep rep-
resentations and image clusters. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 5147–5156, 2016.

Y. Yang, Y. Li, J. Yang, and J. Wen. Dissimilarity-based active learning
for embedded weed identification. Turkish Journal of Agriculture and
Forestry, 46(3):390–401, 2022.

D. Yarowsky. Unsupervised word sense disambiguation rivaling supervised
methods. In 33rd annual meeting of the association for computational
linguistics, pages 189–196, 1995.

X. Ying. An overview of overfitting and its solutions. In Journal of physics:
Conference series, volume 1168, page 022022. IOP Publishing, 2019.

H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz. mixup: Beyond
empirical risk minimization. arXiv preprint arXiv:1710.09412, 2017.

J. Zhang, Y. Rao, C. Man, Z. Jiang, and S. Li. Identification of cucumber
leaf diseases using deep learning and small sample size for agricultural
internet of things. International Journal of Distributed Sensor Networks,
17(4):15501477211007407, 2021.

K. Zhang, K. Lammers, P. Chu, N. Dickinson, Z. Li, and R. Lu. Algorithm
design and integration for a robotic apple harvesting system. arXiv
preprint arXiv:2203.00582, 2022a.

L. Zhang, J. Song, A. Gao, J. Chen, C. Bao, and K. Ma. Be your own teacher:
Improve the performance of convolutional neural networks via self
distillation. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 3713–3722, 2019.

P. Zhang and L. Xu. Unsupervised segmentation of greenhouse plant
images based on statistical method. Scientific reports, 8(1):1–13, 2018.

X. Zhang, L. Han, T. Sobeih, L. Lappin, M. A. Lee, A. Howard, and
A. Kisdi. The self-supervised spectral–spatial vision transformer net-
work for accurate prediction of wheat nitrogen status from uav imagery.
Remote Sensing, 14(6):1400, 2022b.

B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba. Learning
deep features for discriminative localization. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 2921–
2929, 2016.

X. Zhou, Y. Ampatzidis, W. S. Lee, C. Zhou, S. Agehara, and J. K. Schueller.
Deep learning-based postharvest strawberry bruise detection under uv
and incandescent light. Computers and Electronics in Agriculture, 202:
107389, 2022.

Y. Zhou, Y. Zhu, Q. Ye, Q. Qiu, and J. Jiao. Weakly supervised instance
segmentation using class peak response. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 3791–
3800, 2018.

Z.-H. Zhou. When semi-supervised learning meets ensemble learning.
Frontiers of Electrical and Electronic Engineering in China, 6:6–16,

Li et al.: Preprint submitted to Elsevier Page 33 of 34



A Systematic Review on Label-Efficient Learning in Agriculture

2011.
Z.-H. Zhou. Ensemble methods: foundations and algorithms. CRC press,

2012.
Z.-H. Zhou. A brief introduction to weakly supervised learning. National

science review, 5(1):44–53, 2018.
J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired image-to-image

translation using cycle-consistent adversarial networks. In Proceedings
of the IEEE international conference on computer vision, pages 2223–
2232, 2017.

C. Zhuang, A. L. Zhai, and D. Yamins. Local aggregation for unsupervised
learning of visual embeddings. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 6002–6012, 2019.

F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong, and Q. He.
A comprehensive survey on transfer learning. Proceedings of the IEEE,
109(1):43–76, 2020.

Li et al.: Preprint submitted to Elsevier Page 34 of 34


