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A B S T R A C T

Laser profilometry and structured light sensors are being increasingly deployed for pipeline inspection as
they provide the operator with a precise 3D map that can enable visual detection and direct insight into
the integrity of the pipe. The focus of the presented paper is the design of an integrated robotic structured
light sensing system used to improve the performance of 3D defect reconstruction for pipeline inspection while
accommodating the uncertainty seen in a real-world environment. Point cloud registration of the consecutive
3D frames is a key factor in building this 3D map; therefore, a comprehensive featureless registration approach
is proposed first, which is proven more efficient than conventional feature-based registration algorithms. Wheel
odometry from the developed robotic platform and inertial measurements are integrated into the registration
algorithm to enhance the 3D reconstruction performance for sensor stabilization. An intensity-based threshold
searching method is further applied to retrieve the reconstructed defect size. Lastly, the uncertainties of the
structured light sensing are investigated for the total reconstruction uncertainty and estimated measurement
uncertainty to be quantified in order to illustrate the measurement precision. The efficacy of the proposed
algorithms are supported by experimental results of pipeline inspection.
1. Introduction

Plastic pipes have become prevalent for the distribution of natural
gas since the early 1970s and have been the primary material used as
of 2017 [1]. Compared to the traditional steel pipe, which corrodes
relatively easily, plastic pipes offer corrosion resistance and therefore
superior durability for inside and outdoor use [2]. However, the rigidity
and strength of plastic pipes are not comparable to those of steel pipes.
This makes plastic pipes susceptible to damage from, for example,
improper excavation or installation as well as from excessive stresses
in the in-service environment of the pipe [3]. In addition, some of the
disadvantageous material properties, such as higher thermal expansion
coefficient when compared to metal and time and temperature depen-
dence of material properties, make plastic pipes prone to elastoplastic
fracture or plastic collapse, which can result in excessive deformation
and cracks in the pipe [4]. These damages can lead to leaks and
even explosions of gas pipes, which are high-level risks. Therefore, the
detection and identification of deterioration in the material integrity of
plastic pipe walls are of great significance.
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Some nondestructive evaluation (NDE) based methods, such as ul-
trasonic testing [5,6], microwave testing [7,8], infrared thermography
based methods [9,10], and camera-based visual inspection [11,12],
have been developed and validated for the inspection of plastic pipes.
However, each type of inspection method has its own limitations. The
ultrasonic method typically needs a couplant during the inspection,
which constrains the application scenarios. Microwave testing provides
high resolution and accuracy, but the instruments and equipment of the
sensing system are complex and expensive. The infrared thermography
method may cause damage during the inspection since the material
properties of plastic change with temperature. The visual inspection
method, with the use of differing cameras, is an older but popular
method. However, it requires a specific skill set of the operator and
cannot quantify the depth of the damage to the plastic pipe. To remedy
these limitations, a structured light (SL) sensor was developed by the
authors for gas pipe inline inspection [13]. The original prototype of
the SL sensor is suitable for performing the inspection only when the
sensor is moving linearly with no change in orientation. However, in a
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real-world industrial application, such stringent requirements are often
not feasible since the sensor is typically fitted on a moving platform
(e.g., a robot), which will not be able to maintain such a strict pose
while traversing the length of a pipeline. The proposed registration
algorithm addresses this design gap and allows the SL sensing system
to dynamically correct for changes in pose, resulting in a stabilized and
accurate 3D reconstruction of wall profiles.

The designed SL sensor is attached to a scanning platform that
moves along a pipeline during the internal 3D inspection. Every frame
from the sensor produces data for a sparse reconstruction of the pipe
surface with a density that is dependent on the number of projected
rings. In an ideal scenario, the axis of the sensor is aligned with the
main axis of the pipe and always points in the direction of platform
movement, which is defined as the 𝑧-axis. Therefore, the reconstructed
3D frames can be stacked sequentially by only adding a displacement
in the 𝑧-direction that is dependent on the scanner speed at the time
of acquisition. Experimentally, this assumption is not practical because
it is difficult to maintain position of the sensor exactly at the center
of the pipe in the forward direction. Additionally, the speed of the
platform is difficult to keep constant due to multiple uncertainties such
as imperfections in mounting of the sensor to the robot, vibration from
the movement of the robotic platform, and slippage of the robot wheels.
Therefore, a holistic registration algorithm is required to estimate both
the orientation of the sensor and its real-time position inside the pipe
in order to realize accurate 3D reconstruction. For a pipe environment
with defects, the localization of the sensor can be divided into two
interconnected tasks:

• Global positioning: Localizing the identified damage with respect
to the inspected pipe or pipeline network.

• Local positioning: Finding the geometrical transformation be-
tween consecutive frames from the sensor to reconstruct the
surface, especially to characterize defects.

The main information sources for global positioning in an underground
environment are the inertial measurements, wheel odometry, and an-
chor points inside the pipe (joints, connection, mains, etc.). Primary
sources of information for local positioning include initial estimates
of global positioning, refinements of 3D and 2D surface features, and
known environmental constraints. Simultaneous localization and map-
ping (SLAM) algorithms, a popular global positioning method, allow
the incremental creation of maps using data from sensors while esti-
mating real-time positions [14,15]. While various methods have been
applied to reduce mapping errors in SLAM, camera-based mapping with
inertial navigation systems (INS) often have issues with the accuracy
and drift of these systems [16]. For accurate global positioning in
pipeline detection, the cylindrical nature of pipes are utilized as the
basis for SL sensor-based localization [17]. Additionally, encoder data
from the robot can provide accurate estimations on how far inside the
pipeline the robot is [18].

After the global positioning is refined, the performance of the 3D
reconstruction is related to the local positioning of the sensor as well. In
this work, information from wheel odometry and IMU are incorporated
to estimate the speed and orientation of the sensor in real time, which
are able to realize a more reliable local positioning. The data is then fed
into a registration algorithm to provide an initial estimate of the sensor
orientation and position inside the pipe. Following this, a RANSAC-
assisted [19] cylindrical fitting-based registration approach is utilized
to provide high efficacy 3D point cloud registration to stabilize the
sensor. This approach is preferred over using only features-based local-
ization because it provides relatively accurate location and orientation
estimation even when visual features (defects) are absent, which is
common in plastic gas pipelines. With the stabilized sensor, the data
registration is capable of calculating any shift and rotation of the
sensor.

The remaining sections of the paper are organized as follows: Sec-
2

tion 2 presents background information on the designed SL sensor, and
Fig. 1. (a) Fabricated endoscopic SL sensor; (b) Multi-color multi-ring slide pattern
created from the color-coded sequence; (c) Extracted edges of the dark slits; (d) 3D
reconstruction of the acquired example image. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

then provides a detailed description of the point cloud registration.
Section 3 describes the proposed cylindrical fitting-based 3D regis-
tration method with the introduction of a robotic integration system
with external wheel odometry and IMU. An in-depth analysis of the
uncertainty in this system is also provided in this section. Then a
quantitative and qualitative evaluation of the proposed registration
method is evaluated with experimental data in Section 4, while the
initial uncertainty analysis is conducted to prove the high reliability
of the system. A conclusion is presented in Section 5.

2. Background

2.1. Structured light sensor

A structured light (SL) sensor consists of a projection module that
projects a highly textured pattern and a camera that captures the
deformations in the projected pattern [20]. A detailed description of
the SL sensor design and fabrication is addressed in our previous
work [13]. It consists of a camera module, a projector module, and
a connected transparent glass tube for enabling the projection of the
colored rings to the pipe walls, as shown in Fig. 1. The projector module
consists of a high-intensity light-emitting diode (LED), a collimation
lens, a transparency slide, and a projection lens. The Complementary
metal–oxide–semiconductor (CMOS) camera is used to monitor the pipe
surface and capture deformations in the projected rings. The 3D imag-
ing reconstruction of the scanned object surface, as discussed in [20], is
the process of detecting, localizing, and matching the projected edges.
In this process, the acquired image is converted to the polar domain
to perform edge detection based on the predefined color coding of the
slide pattern. The dark slits are separated while the edges are extracted
for localization, as shown in Fig. 1(c) . With essential cleaning and
filtering, the extracted edges of each acquired image are reconstructed
into a cylindrical shape in the 3D domain, which provides a basis for
point cloud registration between data frames, presented in Fig. 1(d).

2.2. Point cloud registration

While the sensor is moving inside the pipe, each image frame
produces a sparse reconstruction of the pipe surface with a density that
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Fig. 2. Illustration of the point cloud registration problem. (a) Point clouds associated
with fixed (black) and moving (red) frames; (b) Merged point clouds following proper
registration of the moving frame. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

is dependent on the number of projected rings. The 3D registration in
this paper is categorized as a rigid registration problem, where two
rigid frames need to be merged as depicted in Fig. 2(a). The black points
represent the main fixed point cloud and the red points represent the
new points on the moving frame that need to be merged with the main
point cloud. Registration of these frames is shown in Fig. 2(b) where the
moving frame is rotated and shifted to merge within the fixed frame.

The primary goal of the registration algorithm is to estimate the
rigid geometrical transformation that registers the data from the mov-
ing frame to the data in the fixed frame. The geometrical transformation
consists of rotation and translation in the 3D space. Therefore, the data
in the moving frame (𝐃𝐌) is described by

𝐃𝐅 = [𝐑|𝐓]𝐃𝐌, (1)

where 𝐑 and 𝐓 are the rotation matrix and the translation vector
respectively, and 𝐃𝐅 is the data representation of the moving frame
in the fixed frame coordinates. 𝐑 is a 3 × 3 orthogonal matrix and 𝐓 is
3 × 1 column vector.

3. Comprehensive 3D registration method

In this section, the proposed featureless-based 3D registration is
introduced. The rotation matrix in Eq. (1) can be decomposed into its
three main components:

𝐑 = 𝐑𝐱𝐑𝐲𝐑𝐳 , (2)
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𝐑𝐱, 𝐑𝐲, 𝐑𝐳 are 3 × 3 rotation matrices that describe the rotation of the
moving frame around 𝑥, 𝑦, and 𝑧 axis, respectively, and 𝜙𝑥, 𝜙𝑦, 𝜙𝑧 are
the corresponding rotation angles. The translation vector also has three
main components

𝐓 = [𝑇𝑥, 𝑇𝑦, 𝑇𝑧], (3)

where 𝑇𝑥, 𝑇𝑦, 𝑇𝑧 represent the displacement in the 𝑥, 𝑦, 𝑧 directions,
respectively. Since an infinite cylindrical surface is assumed, and with
3

Fig. 3. Proposed registration approach for sensor stabilization with data acquisition
procedure.

the assistance of inertial measurements, there is no need to estimate
the rotation around the 𝑧-axis or the shift along the 𝑧 direction. There-
fore, in this paper, the rigid transformation components are estimated
through a cylindrical fitting, which is used to estimate 𝐑𝑥,𝐑𝑦, and
𝑇𝑥, 𝑇𝑦.

To find the geometric transformation, the registration algorithm de-
pends on both inertial measurements and the matching of the common
features in the fixed and moving frames. The main framework of the
proposed registration algorithm for sensor stabilization can be summa-
rized in Fig. 3 with two main interconnected tasks: local positioning
and global positioning. In this scheme, the use of a synchronized acqui-
sition framework is realized with real-time 3D point cloud data which is
assisted by IMU and wheel odometry data. Global positioning provides
a rough estimate of the pose (position and orientation) of the sensors
inside the pipe by using wheel odometry and inertial measurements.
This data is fed to a registration algorithm to provide an initial guess
about the pose of the sensors inside the pipe. The 3D information is
then used to provide a more precise tuning. If defect features are found,
the global position is updated and the data is registered; otherwise, the
initial global position is used in addition to the constraints from the
cylindrical 3D environment.

3.1. Cylindrical fitting

The 3D points from a sensor inside a pipe are assumed to belong to
an arbitrary infinite cylinder (𝐃𝐚𝐫𝐛). This is a simplified assumption that
ignores the existence of surface defects, which is a problem that will be
accounted for separately. Therefore, in this method the prior pipe shape
geometry is a basis to realize a non-feature-dependent 3D registration.
A cylinder parallel to the 𝑧-axis that is centered around zero in the 𝑥–𝑦
plane is described as 𝐃. An infinite cylinder (𝐃𝐚𝐫𝐛) with an arbitrary
orientation can be described as the cylinder (𝐃) that is rotated by a
rotation matrix 𝐑 and shifted by a translation vector (𝐓𝐂𝐲𝐥)

𝐃arb = 𝐑𝐃 + 𝐓𝐂𝐲𝐥, (4)

where

𝐑 = 𝐑 𝐑 , (5)
𝐱 𝐲
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𝑟

Fig. 4. Triangulation of structured light sensor inside a pipe environment.

𝐓𝐶𝑦𝑙 = [𝐓𝐱 ,𝐓𝐲]. (6)

From the above equations, the transformation is not a function of
the shift and rotation around the 𝑧-axis; therefore, the number of
parameters in the rigid transformation is reduced to 𝜙𝑥, 𝜙𝑦, 𝑇𝑥, and 𝑇𝑦
only. A direct solution to fitting a cylinder to the point cloud can be
found by minimizing the variance of the estimated radius of the pipe
(�̂�𝐂𝐲𝐥) from the estimated 3D points (�̂�). Therefore, the minimization
problem is described by

(𝜙𝑥, 𝜙𝑦, 𝑇𝑥, 𝑇𝑦) = 𝑎𝑟𝑔𝑚𝑖𝑛(𝑉 𝑎𝑟(�̂�𝐂𝐲𝐥)), (7)

and any point on the surface of estimated �̂� satisfies

̂𝐶𝑦𝑙𝑖 =
√

�̂�2
𝑥𝑖
+ �̂�2

𝑦𝑖
, (8)

�̂�𝐂𝐲𝐥 = [𝑟𝐶𝑦𝑙1 , 𝑟𝐶𝑦𝑙2 , 𝑟𝐶𝑦𝑙3 ,… ..., 𝑟𝐶𝑦𝑙𝑛 ]. (9)

In this paper, sensor characteristics are integrated into the 3D
registration problem to improve the robustness of the fitting perfor-
mance. The environment inside the pipe is described in Fig. 4, where a
calibrated structured light sensor is enclosed by a cylinder with a radius
𝐑𝐂𝐲𝐥, while each projected ring by the SL projector is assumed to be an
acute cone with the main axis direction described by a unit vector �⃗�𝐂𝐲𝐥.
In this environment, the camera is located at the origin (𝐶 = (0, 0, 0))
of the coordinate system and the camera is pointing along the 𝑧-axis.
The projected ring is imaged by the camera to create a set of image
points (𝐃𝐂) that can be represented by the camera ray (�⃗�). The camera
rays intersect with both the projected cone from the projector module
and the surface of the bounding cylinder. Therefore, the intersection
points belong to both the cylinder and the cone surfaces. With known
cylinder parameters (), the intersection between the camera ray and
the cylindrical surface can be easily calculated with the substitution
of the ray equation in the cylinder equation. Therefore, the cylinder
orientation can be calculated by minimizing the difference between 𝐃𝐂
and 𝐃𝐚𝐫𝐛, which can be described by

(𝜙𝑥, 𝜙𝑦, 𝑇𝑥, 𝑇𝑦) = 𝑎𝑟𝑔𝑚𝑖𝑛(‖(𝐃𝐚𝐫𝐛 − 𝐃𝐂)‖𝟐𝟐). (10)

One source of error that affects the accuracy of the cylindrical
fitting is the existence of artifacts on the pipe wall since the fitting
process assumes an ideal cylindrical surface. The defect causes the
fitting algorithm to be biased and results in an inaccurate estimation
of the cylinder parameters; therefore, the problem is more prominent
4

Fig. 5. Alignment correction with cylindrical fitting, (a) Input moving frame; (b)
Moving frame with isolated defect by RANSAC in blue; (c) Point clouds after alignment
correction, Red: Moving frame, Black: Fixed frame. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

when having deep defects in the pipe wall [13]. To reduce the effect
of wall defects, the defects are assumed to be outliers that need to
be identified and removed from the fitting problem. In this case,
random sample consensus (RANSAC) was applied. RANSAC is an it-
erative method that estimates the model parameters in the existence
of outliers by separating them from inliers with repeated random sub-
sampling [19]. Therefore, all the defects are separated as they do not fit
the cylindrical model that is assumed during the optimization process.
The fitting process of simulation is presented in Fig. 5, where the
input frame to the fitting process with a cylinder diameter of 6 inches
(76.2 mm) and a wall defect of a depth of 10.16 mm. Fig. 5(b) shows
the isolated defect region with RANSAC, while the actual rotation angle
is around the 𝑧 axis. The algorithm can successfully isolate the defect
region from the rest of the cylindrical surface. After isolating the defect
data, the cylindrical surface data is fitted and the rigid transformation
parameters are calculated.

The output of this stage is described in Fig. 5(c) where it shows two
point clouds that are aligned along the 𝑧-axis and are centered around
the origin.

3.2. Inertial measurements

The IMU is unable to provide an absolute 3D position of the sensor
by itself, but it can provide linear acceleration, angular velocity, and
orientation information. Due to the integrative nature of the position
calculation, the error in the position estimation accumulates over time,
especially in the case of small-size low-end IMU sensors. Therefore,
using accelerometer data for distance estimation is not a reliable so-
lution for this use case. The IMU also combines readings from the
magnetometer and gyroscope to estimate the orientation of the IMU
in 3D space, which is used to estimate the rotation angle of the sensor
inside the pipe.

3.2.1. Gyroscope-camera calibration
The gyroscope camera calibration is needed to estimate the rigid

transformation between the camera and gyroscope readings. This en-
ables a direct translation of the rotation in the gyroscope reading to a
rotation in the camera/sensor frame.
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In this paper, a practical calibration approach is developed to
simplify the optimization problem for handling a smaller number of
unknowns than conventional methods:

1. Ignore the effect of the camera rolling shutter by performing the
calibration with slow sensor movement and using the move and
hold procedure. This is a realistic assumption since the sensor
experiences rolling shutter behavior only outside the pipe when
it cannot utilize the synchronized LED illumination.

2. Since synchronized camera and IMU acquisition and the move
and hold procedure are utilized, the delay between the acquisi-
tion of the camera frame and the IMU reading is negligible.

3. The gyroscope is also internally calibrated, therefore there is not
a need to calculate the gyroscope bias.

With these constraints, the calibration issue can be dealt with as an
eye-hand calibration problem. Similar to hand-eye calibration, the
calibration is aided by a calibration board to facilitate estimating the
position of the camera and its orientation in the 3D world. Any rotation
of the camera leads to a rotation in the original camera data 𝐃 as
follows:

𝐃𝐜 = 𝐑𝐜𝐃. (11)

where 𝐑𝐜 is a rotation matrix describing the rotational change in the ob-
tained rotated camera data 𝐃𝐜. Similarly, for the IMU data acquisition,

𝐃𝐜 = 𝐑𝐜𝐚𝐥𝐃𝐜𝐦, (12)

𝐃𝐜𝐦 = 𝐑𝐦𝐑𝐓
𝐜𝐚𝐥𝐃. (13)

where 𝐑𝐜𝐚𝐥 is the calibration matrix which is the transformation matrix
from the obtained camera data 𝐃𝐜 to IMU frame 𝐃𝐜𝐦, and 𝐑𝐦 is a
rotation matrix for the change in rotation in the IMU frame, which is
obtained from the IMU readings.

Therefore, combining Eqs. (12) and (13), the relationship between
𝐑𝐜 and 𝐑𝐦 can be inferred as follow:

𝐃𝐜 = 𝐑𝐓
𝐜𝐚𝐥𝐑𝑚𝐑𝐜𝐚𝐥𝐃 = 𝐑𝐜𝐃, (14)

𝐑𝐜 = 𝐑𝐓
𝐜𝐚𝐥𝐑𝐦𝐑𝐜𝐚𝐥. (15)

During the calibration process, camera and gyroscope data is col-
lected with a calibration board in the field of view of the camera to
provide a camera pose. If two consecutive frames from the system are
examined, there will be two states:

State 1 (frame1):𝑂𝑐1, 𝑂𝑚1, 𝐷𝑐1, (16)

State 2 (frame2): 𝑂𝑐2, 𝑂𝑚2, 𝐷𝑐2, (17)

where 𝑂𝑐 is the orientation of the camera, 𝑂𝑚 is the orientation
measured by IMU and 𝐷𝑖 is data generated by line-plane intersection.
According to Eq. (15):

𝐑𝐜𝐑𝐓
𝐜𝐚𝐥 = 𝐑𝐓

𝐜𝐚𝐥𝐑𝐦. (18)

Since the camera has already been calibrated, 𝐑𝐜 and 𝐑𝐦 are known
and only 𝐑𝐜𝐚𝐥 needs to be solved for. The equation can be arranged
to have the form 𝐀𝐱 = 𝟎, and the value of 𝐱 can be found by finding
the null space of the set of homogeneous equations. However, upon
further examination of the problem, it was noticed that adding noise
leads to a failure of the solver to find any solution other than the trivial
solution. The problem is ill-posed [21] and the matrix 𝐀 has a large
condition number (2.7 × 1016 from simulated data) which means that
a small change in the input can lead to a large change in the output.
To handle this problem, the approach proposed by Tsai and Lenz [22]
is used to solve 𝐀𝐱 = 𝐱𝐁 problems which provide a more stable and
regularized solution.
5

Fig. 6. Gyroscope calibration process with the help of vision-based orientation
estimation.

Fig. 7. Comparison between the ground truth from the camera and the estimated
orientation from the IMU, (a) Rotation around the 𝑥-axis; (b) Rotation around the
𝑦-axis; (c) Rotation around the 𝑧-axis.

For the experimental setup, 500 camera-IMU frame pairs were
collected to serve as input to the calibration algorithm. For the camera-
based localization, Aruco patterns were used because they can be
decoded even with partial occlusions to the calibration boards. The
camera is first calibrated then each camera frame is flattened to remove
the effect of lens distortion. With known camera intrinsic parameters
and calibration board pattern, the board orientation can be calculated
by using the Perspective-n-Point approach. The change in the camera
orientation equals the inverse of the change in the orientation of the
board. A schematic explaining the calibration process is shown in Fig. 6.
The gyroscope data was collected in quaternion form as four-channel
time series and a median filter was then applied to reduce the effect of
salt and pepper noise. Since the change in rotation is of interest instead
of the actual orientation, the difference in the rotation between every
two consecutive frames is calculated as follows:

𝐑𝐱𝐢 = 𝐑𝐢 + 𝟏𝐑𝐓
𝐢 , (19)

where 𝐑𝐢 refers to the rotation matrix of the 𝑖th frame and 𝐑𝐱𝐢 is the
difference in the rotation between every two consecutive frames. A
more stable approach was to measure the difference in rotation with
respect to the first frame 𝐑𝟏 and it is given by

𝐑𝐱𝐢 = 𝐑𝐢+𝟏𝐑𝐓
𝟏 . (20)

This approach depends on the absolute pose provided by the sensor
instead of depending on the frame-to-frame difference. The absolute
pose method shows better performance with a RMSE reduction of 10%.
The improvement can be related to the effect of the filtering algorithm
in the sensor which corrects the error over time adaptively. The results
of applying the calibration matrix to the IMU data are shown in Fig. 7.
These results shown satisfactory calibration for all the axis with RMSE
values of the error ranging from 0.019 to 0.022 radians. It is worth
noting that tracking the rotation around the 𝑥-axis and 𝑦-axis is not a
priority since the main interest is in checking if the sensor has rotated
around the main pipe axis (𝑧-axis).
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3.2.2. Usage of the IMU data
Once the calibration parameters are known, the IMU data can be

used to monitor the sensor orientation, which is further integrated
for sensor orientation correction, with the following algorithm: In the
beginning, a reference frame (frame 1) is marked and its orientation
can be described by:

𝐑𝐜𝟏 = 𝐑𝐓
𝐜𝐚𝐥𝐑𝐦𝟏

𝐑𝐜𝐚𝐥, (21)

where 𝐑𝐦 is a rotation matrix for the change in rotation in the IMU
frame, and 𝐑𝐜 is a rotation matrix for the change in rotation in the
camera frame. 𝐑𝐦𝟏

is the initial IMU frame, which gives the initial
rotation in the camera frame 𝐑𝐜𝟏 . Any consecutive frame (frame 𝑖)
orientation is described by:

𝐑𝐜𝐢 = 𝐑𝐓
𝐜𝐚𝐥𝐑𝐦𝐢

𝐑𝐜𝐚𝐥, (22)

Relative rotation between the initial frame and the current frame 𝑖 is
given by

𝐑𝐜𝐦𝐢
= 𝐑𝐓

𝐜𝟏
𝐑𝐜𝐢 , (23)

This can then be applied to correct the original data 𝐃𝐜𝐢 provided by
the IMU to obtain the corrected data frame 𝐃𝐜𝐦𝐢

to compensate for the
actual sensor rotation as follow:

𝐃𝐜𝐢 = 𝐑𝐓
𝐜𝐦𝐢

𝐃𝐜𝐦𝐢
. (24)

3.3. Wheel odometry

Another set of sensors utilized for localization is the wheel odome-
ters as an additional input to estimate the speed and position of the
platform. The sensor position is estimated according to the number of
wheel rotations at the 𝑖th frame 𝑤𝑟(𝑖), and its diameter 𝑑. Therefore,
the estimated instantaneous position at frame 𝑖 relative to the initial
location is given by

𝑇𝑜𝑑 (𝑖) = 𝑤𝑟(𝑖)𝜋𝑑. (25)

The estimated distance 𝐷𝐼𝑆𝑖 between the 𝑖th and the previous frame
is given as:

𝐷𝐼𝑆𝑖 = 𝑇𝑜𝑑 (𝑖) − 𝑇𝑜𝑑 (𝑖 − 1). (26)

In the experimental setup, a robotic platform is utilized to maneuver
the structured light inside the pipeline. For linear movement inside
the pipeline, the robot uses three pairs of wheels, with each set of
wheels connected to a dedicated encoder. The robot with highlighted
encoders is shown in Fig. 8(a); while the integrated SL sensor is
attached at the side opposite to the Raspberry Pi, shown in Fig. 8(b).
3D printed material and the necessary electronics were integrated with
the robot for operation. The robot is powered by two attached sets of
14.4v LiPo batteries. These batteries provide the necessary power to
the motors, structured light projectors, and other electronics, enabling
them to operate untethered. The control board used for operation is
a Raspberry Pi 4B, with GPIO pins used to control output to motors,
read IMU and encoder data, and switch LEDs of the structured light
sensor on and off. The Raspberry Pi allows for remote connection via
Wi-Fi for remote controllability of the robot. The robot is driven by
5 sets of N20 motors with encoders. The middle three sets of motors
are used for forwarding and backward directional movement inside
the pipeline. The motors are connected to 7 PPR magnetic encoders
and are geared down at a ratio of 603:1. This provides for a very
high resolution on the rotation of the output shaft of the motor. The
motors are attached to Omni wheels that reduce the amount of torque
required to rotate the robot inside the pipeline. The end two motors
are attached to free-rolling hemispherical wheels that rotate along the
edge of the pipe to provide the necessary torque to achieve rotation
inside the pipe. The use of three encoders improves the robustness of
the data because the probability of three wheels slippage is lower than
the probability of the slippage of a single wheel. In this paper, the
6

Fig. 8. (a) Robotic platform with integrated SL sensor; (b) Main component of SL
sensor; (c) Real-time data collection and monitoring in 6-inch pipe.

median distance between frames of the three encoders are used as the
reference distance estimate for the entire robot. Utilizing the median
can reduce effects from wheel slippage producing an artificial distance
increase or from motor stalling decreasing the distance. In this work,
the robot-integrated sensing system was deployed in the 6-inch PVC
pipe, which is shown in Fig. 8(c), whose performance will be analyzed
in subsequent sections.

3.4. Uncertainty source analysis

In pipeline inspection or field testing, a systematic investigation
of the effects due to various uncertainties is essential for quantitative
NDE and reliability analysis. Uncertainty quantification (UQ) is critical
to quantitatively describing the quality and reflects the accuracy of
detection, and ultimately the reliability of the complex systems. In this
sensing system, any uncertainty or error in data acquisition, feature
extraction, or subsequent analysis will inevitably affect the quality and
reliability of the final reconstructed 3D data. Therefore, uncertainty
quantification facilitates objective assessment of performance and pro-
vides a comprehensive analysis to show the relationship between the
uncertainty involved and the final output, and thus provide a high reli-
ability sensing system for pipeline inspection. Errors and uncertainties
affecting the accuracy of this structured light 3D measurement system
mainly come from three parts: the instruments, the processing method,
and the environment.

1. From Instrument Design: A reliable and rigid mechanical de-
sign of the sensing system is important. Shadow effect of the sen-
sor is one major uncertainty source, which deteriorates the re-
construction accuracy when dealing with abrupt height changes
in the pipe surface. As mentioned in [13], this problem is caused
by the current single camera and projector setup, which restricts
the view angle. Low intensity of the light source and low reso-
lution will cause poor imaging quality of the slide pattern, and
thus may affect the measurement accuracy. Also, the accurate
distance and direction measurements from the IMU and encoder
are key factors in determining the alignment between the frames
and accumulated error will lead to performance degradation
of the localization. For the odometry input, according to the
Eq. (25), possible error accumulation will arise from either the
measurements of the wheel diameter and speed estimation.
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(a) Wheel diameter: non-circular wheel shape because of the
usage of omnidirectional wheels.

(b) Wheel slippage: wheel slippage while passing over obsta-
cles or during turning, will cause perturbations in velocity
measurements. The relation between the acquired wheel
slip velocity 𝑉𝑠 and the measured velocity (rotational
speed) 𝑉𝑟 can be described through a linear function with
an unbiased Gaussian uncertainty 𝑈 [23], which can be
written as:

𝐕𝐬 = (𝐟 (𝐕𝐫 ) + 𝐔) (27)

while the uncertainty 𝑈 ∼  (0, 𝜎2) is the unbiased
Gaussian noise with zero mean and variance 𝜎2; 𝑓 (.) is
first order polynomial fitting procedure with lease square
estimate. Therefore, if slip is considered in future work,
the wheel slip distance 𝑇𝑜𝑑𝑠, defined in Eq. (25), can be
obtained by velocity and duration 𝛥𝑡 ∶ 𝑇𝑜𝑑𝑠 = 𝑉𝑠 ⋅ 𝛥𝑡.

2. From Method: The calibration of the main components of the
SL sensor, such as the camera, projector, and IMU, are essential
to obtaining the relative parameters for further data analy-
sis. Errors introduced by the imprecise parameter estimation
of the sensing system will deteriorate the overall performance.
Therefore, a reliable and efficient calibration method for each
component is essential. For the following defect reconstruction
and measurement, uncertainties from those processing models,
such as the calculation error of the registration algorithm, also
contribute to the uncertainty in the measurement result.

3. From Environment: The environment where tests and cali-
brations are performed can have an influence on uncertainty
in measurement results. Vibration caused by the uneven pipe
surface can introduce random errors into the measurements.
Additionally, inadequate lighting conditions for measurements
have a crucial impact on the imaging quality, which makes the
slide patterns difficult to distinguish.

The measurement uncertainties will result in a decrease of the precision
and accuracy of the reconstructed defect shape, which will be further
investigated in Section 4.4.2

4. Evaluation of the IMU-assisted sensing system

4.1. Experimental setup

To demonstrate the IMU-assisted robotic sensing system, experi-
ments were performed in a 6-inch diameter PVC pipe with two defects,
The first scanned segment is from point A to B, and the second is from
point B to C as shown in Fig. 9. Both defects have the same dimensions
of 70 mm length, 35 mm width, and 7.5 mm depth. The sensor was
first attached to a gantry and traverses the pipe. The inspection process
starts at point A and moved towards point B. Upon reaching point B,
the sensor is rotated about the 𝑧-axis and then the sensor is moved to
point C. This inspection scenario simulates sensor rotation during an
inspection with off-center sensor misalignment. Fig. 10 shows example
structured light image frames, highlighting the sensor rotation between
segments A to B, and B to C.

4.2. Comparison of 3D reconstruction methods

To evaluate the performance of the proposed cylindrical fitting-
based registration algorithm, it is compared to two other methods.
The first method is an ellipsoid fitting-based point cloud registration
algorithm, which was previously developed by some of the authors of
this work [13]. In this method, an ellipsoid is used to fit the cylindrical
surface to handle pipes with oval shapes and errors from the sensor
calibration and then estimate both the orientation of the sensor and
its position inside the pipe for each acquired frame with followed
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Fig. 9. Schematic of the test pipe.

Fig. 10. Example image frame illustration (a) Point A to Point B; (b) Point B to Point
C.

alignment correction. To register multiple frames, the corrected data
is stacked by adding a constant displacement in the 𝑧-direction for
each acquired frame, while keeping 𝑧-direction displacement constant
by having a fixed scanning speed.

The second method is the Iterative Closest Point (ICP) algorithm,
which is a classic registration method, commonly used to register 2D
or 3D surfaces from different scans and to localize robots to achieve
optimal path planning [24]. It is one of the approaches adopted in
developing 3D models or building 3D world maps for SLAM [25–27].
The ICP algorithm helps find the transformation between a point cloud
and a reference point cloud by minimizing the squared error between
the corresponding entities. In this method, the initial frame is used
as the reference to obtain the initial estimation of the transformation
through a fitted plane. For the following frames, a point-to-plane
distance metric minimization technique aligns each source point cloud
with the combined estimation of rotation and translation. Similarly, the
aligned frame will be stacked in the 𝑧-direction to reconstruct the pipe.

The comparison results are presented in Fig. 11. From the top view,
it can be seen that the proposed registration algorithm retrieves a better
pipe shape with a clearer and smoother boundary compared to the
other two methods. Also, the marked defect area in the cylindrical-
based method is more distinct and solid which is beneficial for defect
isolation. Additionally, from the side view, the reconstructed 3D profile
of the ICP-based method has a large misalignment after the sensor
rotation, while the ellipsoid-based and the proposed cylindrical fitting-
based method could fully reconstruct the 3D profile of the inspected
pipe section. The main criterion of the registration algorithm is the
ability to reconstruct the complete pipeline structure with less noise.
Specifically, each data frame should be aligned vertically to build a
straight and clear pipe surface. Therefore, a plane was applied to fit
each reconstructed 3D point cloud pipe and extract the normal vector
⃖⃖⃗𝐧𝑖 to obtain the directional information of each frame 𝐢. Since the pipe
is a standard cylinder, projecting the 3D data frame onto the XY plane
should theoretically result in a circle. The projected points are then
fitted to a circle to obtain the estimated center location 𝐎𝐜𝐢 and radius
𝐑𝐚𝐢. The location of each frame can be reflected from the extracted cen-
ter, which is highly related to the registration theory of each method.
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Fig. 11. Reconstruction performance comparison among Ellipsoid based (left), ICP-
based (middle) and proposed Cylindrical (right) registration algorithm: (a) Top view:
reconstructed defect area are marked by red-dotted circle; (b) Side view; (c) Illustration
of evaluation parameters from one single frame for performance comparison.

For a well-registered model, the differences in estimated centers and in
directional vectors should be small to ensure height alignment between
frames. Also, in the horizontal direction, the estimated circle should
approximate the actual pipe size, so the estimated radius is a good
criterion for evaluating registration performance, which is interpreted
as Closeness, and defined as:

𝐶𝑙𝑜𝑠𝑒𝑛𝑒𝑠𝑠 =
∣ �̄�𝑎 − 𝑅𝐺𝑇 ∣

𝑅𝐺𝑇
⋅ 100%. (28)

where �̄�𝑎 is the average of the total estimated 𝐑𝐚𝐢 in each method.
Therefore, the above shape-based parameters can be extracted from
the reconstructed pipe to quantitatively evaluate the reconstruction of
those three registration techniques, which are illustrated in Fig. 11(c).
In this comparison work, total variances of the normal vectors, center
locations, and radius closeness are obtained from each registration
technique, which is shown in Table 1.

The results show that all three methods are able to correct the
frame in a consistent direction with low variance in the estimated norm.
However, the cylindrical-based algorithm has a much higher reliability
for vertical frame alignments based on the low center variance. For
the estimated radius, although all methods were able to obtain the
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Table 1
Reconstruction quality evaluation for registration techniques.

Normal variance (mm) Center variance (mm) Radius closeness

Ellipsoid 0.001 1.507 1.71%
ICP 0.002 9.112 1.55%
Cylindrical 0.001 0.025 0.95%

pipe diameter with small differences, the largest error was 1.71% from
the ellipsoid-based fitting method, while the proposed method had
the highest accuracy. Overall, the proposed method has been shown
to be robust and reliable in alignment correction. Theoretically, ICP
registration has the advantage of very high accuracy, but the perfor-
mances and registration efficiency are constrained by a good initial
value, the small transformation between the two point clouds, and
small occlusion [28,29]. In this case, especially during the rotation,
there exists a large misalignment between two point clouds, where
the defect location is changed and the baseline of the whole frame
is shifted. In addition, traditional ICP registration relies purely on
geometry, color, or meshes, and thus cannot perfectly restore the defect
area, especially when the initial point cloud is not able to contain the
full defect information. In the proposed algorithm, however, the defect
is considered as the feature, which could allow the reconstruction of
the pipe and defects with higher reliability and are robust to a baseline
shift. Considering the quality of reconstructed pipe shapes and defects,
the proposed cylindrical-based 3D registration algorithm outperforms
the state-of-the-art methods compared in this work.

4.3. Effect of using IMU

All of the registration methods listed in Section 4.2 failed to correct
the rotation of the sensing platform around the main axis of the pipe.
Therefore, IMU data was acquired in real-time with the camera data
and then used to correct the data alignments according to the procedure
described in Section 3.2.2. To illustrate the sensitivity and efficacy of
the IMU, two experiments were performed at different rotation angles
(8 degrees and 25 degrees) from point B to point C.

The 3D reconstructed profile after incorporating the IMU data with
the proposed cylindrical-based registration is shown in Fig. 12. From
the top and side views, it can be noticed that after integrating the
IMU information, the position of the second defect is corrected to a
similar vertical orientation to the first defect in both cases. Specifically,
in Fig. 12(b), the estimated angle between two defects in 𝑧-axis with
IMU assistance is corrected from 8 degrees to 2.3 degrees, while the
change in Fig. 12(d) is corrected from 25 degrees to 3.3 degrees.
Even with a relatively small rotation angle (8 degrees), the IMU is
sensitive enough to capture changes in rotation and was found to
create precise orientation readings. Experimental results show that the
proposed registration algorithm with the IMU data incorporated was
sufficient to reconstruct the defect adequately, which provides a good
basis for applying cylindrical-based 3D registration to facilitate more
reliable data reconstruction.

4.4. Integration with robotic platform

For testing the robot-integrated sensing system, the robot navigated
from point A to point B in the 6-inch pipe. The acquired instanta-
neous position from the wheel encoders was deployed to adjust the
stacking distance between each reconstructed frame; therefore, the
reconstructed map will be able to provide a more accurate defect point
cloud. The reconstructed pipe is presented in Fig. 13. To better illustrate
the effectiveness and robustness of the robotic integrated platform, the
reconstructed defect size was estimated based on experimental data for

comparison with the ground truth defect size.
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Fig. 12. Reconstruction performance without IMU (left) and with IMU (right). Rotation
angle: 8 degree: (a) Top view; (b) Side view, Rotation angle: 25 degree; (c) Top view;
(d) Side view.

4.4.1. Reconstruction performance in defect size estimation
The size estimation was converted to a segmentation problem, start-

ing with flattening the reconstructed 3-D Point cloud to the cylindrical
domain. The following defect length and width estimation procedure
is realized through a proposed Intensity-based Threshold Searching
algorithm, as illustrated in Fig. 14.

First, the intensity histogram is used to obtain 𝐍 intensity clusters
and then extract the mean of each cluster: 𝐌𝐢 ∶ 𝐌𝟏,𝐌𝟐,… ,𝐌𝐍; Next,
based on each 𝐌𝐢, the binarized cylindrical defect map 𝐁𝐢 is generated
for the following defect segmentation to obtain the estimated length 𝐋𝐢
and width 𝐖 ; Then by evaluating the distance between the estimated
9

𝐢

Fig. 13. Reconstruction performance with robotic integration: (a) Top view; (b) Side
view.

Fig. 14. Intensity-based Threshold Searching Procedure: (a) Cylindrical defect map; (b)
Intensity histogram; (c) Binarized candidate examples with the segmented defect.

size and the true defect size 𝐿𝐺𝑇 and 𝑊𝐺𝑇 , an error estimation is
deployed for selecting the best candidate, which is described as follows:

𝐸𝑟𝑟𝑖 = 0.5 ∗

√

(
𝐿𝑖 − 𝐿𝐺𝑇

𝐿𝐺𝑇
)2 + (

𝑊𝑖 −𝑊𝐺𝑇
𝑊𝐺𝑇

)2. (29)

By selecting the minimal 𝐸𝑟𝑟, the corresponding cluster 𝐌𝑜𝑝𝑡𝑖𝑚𝑎𝑙
is obtained as the optimal threshold, and thus the optimal estimated
defect length 𝐋∗ and Width 𝐖∗ are created.

Furthermore, the significance of determining defect depth lies in
its critical role in assessing the impact of a defect on the structural
integrity of a component or material. In this application, the process of
reconstructing the defect depth begins with the extraction of a 3D point
cloud representing the defect region, as illustrated in Fig. 15. The 3D
defect map is initially converted to the 𝑌 −𝑍 axis, and then the defect
information is isolated to obtain the average background information
𝐵. This background information is utilized to fill in the defect area,
resulting in the final construction of a complete 3D plot that accurately
represents the defect in relation to its reconstructed depth. Since the
true defect surface has some inherent roughness, and from the full map,
the variation in defect depth can be observed, which provides a good
basis for understanding the inspected defect. As the industry focuses on
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Fig. 15. Defect depth estimation procedure.

Table 2
Estimated defect size and 𝐸𝑟𝑟𝑜𝑟 in repetition tests.

Test 1 Test 2 Test 3 Test 4 Test 5 Test 6

Length (mm) 67.2 72.3 67.7 71.3 76.6 66.1
Width (mm) 34.2 35.7 33.1 31.3 35.2 32.6
Err 2.3% 1.9% 3.2% 5.4% 4.7% 4.4%
Depth (mm) 5.7 8.6 9.4 4.7 5.6 4.8
Error 8.2% 5.1% 8.7% 12.9% 9.0% 12.4%

determining the maximum wall loss, only the largest estimated depth
measurement is taken into consideration in this case.

To investigate the accuracy of the reconstructed measurements,
the estimated length 𝐿𝑖, width 𝑊𝑖, and depth 𝐷𝑖 are compared to
the ground truth defect size 𝐿𝐺𝑇 , 𝑊𝐺𝑇 , and 𝐷𝐺𝑇 . This evaluation
involves an error estimation equation that considers the differences in
length, width, and depth simultaneously. The equation for evaluating
the overall size estimation performance is as follows:

𝐸𝑟𝑟𝑜𝑟𝑖 =

√

(𝐿𝑖−𝐿𝐺𝑇
𝐿𝐺𝑇

)2 + (𝑊𝑖−𝑊𝐺𝑇
𝑊𝐺𝑇

)2 + (𝐷𝑖−𝐷𝐺𝑇
𝐷𝐺𝑇

)2

3
(30)

Given the presence of uncertainties in the reconstruction results,
the calculated values of 𝐸𝑟𝑟 and 𝐸𝑟𝑟𝑜𝑟 serve as reliable estimations
for the length-width of the defect and the overall uncertainty in this
sensing system based on 3D reconstruction. To better evaluate the
reconstruction performance, six repeated scans (𝑖 = 6) with the robotic
platform were conducted, where the results are presented in Table 2.
The results indicate that there is variation observed in the reconstructed
defect sizes, and the error in the overall size estimation can be as
high as 12.9%. However, when considering the estimated 𝐸𝑟𝑟, the
differences between the estimated defect size and the ground truth
defect are relatively small, staying within 6%. Therefore, the proposed
registration and subsequent defect estimation algorithm employed in
this IMU-assisted SL sensing system have been demonstrated to effec-
tively uncover genuine defect information, particularly in accurately
estimating defect length and width with a high level of precision. Fur-
thermore, the applied robotic system has proven to enable an efficient
and robust multiple data collection system via SLAM capabilities.

4.4.2. Measurement uncertainty analysis
The uncertainty of the entire system does not only come from the

known uncertainty source; measurements and the following analysis
procedures also contribute to the uncertainty. Therefore, it is difficult
10
Fig. 16. Comparison results of expanded uncertainty with GUM.

to quantify the relationship between inputs and measured outputs
directly. The Guide to the Expression of Uncertainty in Measurement
(GUM), is the most commonly used method to analyze measurement
uncertainty, which can reflect all propagated uncertainties relevant to
the measurement and thus is instrumental in evaluating the quality
of measurements. In the content of the GUM model, the measurement
uncertainty is obtained from three aspects: repeatability, reproducibil-
ity, and maximum indication error of the instrument. Repeatability
denotes changes in measurement data during repeated measurements
under the same condition, whereas with reproducibility, measurement
data changes are caused by changing measurement conditions [30].
Considering there are no other measurement methods, measurement
instruments, or operators involved in this work, the GUM-based un-
certainty analysis of repeatability is addressed only based on the six
reconstruction results presented in Table 2.

In this process, the mean square is an approximation of the vari-
ance of the measured value under the same conditions. The standard
deviation combination 𝑆 of multiple measurement 𝑛 is considered as
standard measurement uncertainty. Further, according to GUM, an ex-
panded uncertainty is applied to provide coverage with 95% confidence
when 𝑘 = 1.96, therefore the measurement uncertainty is expressed as:

𝑈𝑒𝑥𝑡𝑒𝑛𝑑 = 𝑘 ∗ 𝑈𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 = 𝑘 ∗ 𝑆
√

𝑁

= 𝑘 ∗

√

√

√

√

1
𝑁(𝑛 − 1)

𝑛
∑

𝑖=1
(𝑦𝑖 − �̄�)2

(31)

where the mean value of 𝑁 repeat measurements is considered as
the optimal representation; 𝑦𝑖 is the 𝑖th measurement value; and �̄�
is the average value of repeated measurements [31]. To track the
relationship between the number of repetitions and the uncertainty, K-
combinations were applied for each repeated measurement to increase
the reliability and variety of the tests. Specifically, the standard de-
viation is calculated from measurements with possible combinations
of measurements

(𝐧
𝐦
)

depending on 𝐦 and then the average standard
deviation in those from 𝐧 choose 𝐦 combinations are taken to obtain
the standard uncertainty for repetitions from 1 to 𝐧 [32]. The standard
uncertainties in the estimated defect length and width are computed
separately, shown in Fig. 16.

The result shows that measurement uncertainties are correlated
with the number of repetitions, where the uncertainties decreased as
the number of repetitions increased, which proves the importance of re-
peat measurements for uncertainty reduction. Overall, the uncertainty
of the length estimation is much smaller than that of the width, and
since the frame distance is one of the main factors in determining the
length, the accuracy and robustness of the odometer and IMU sensors
in position correction are demonstrated. According to Eq. (31), the
measurement uncertainty interval can be determined by considering



NDT and E International 139 (2023) 102936M. Alzuhiri et al.
Table 3
Measurement uncertainty evaluation.

Measurement uncertainty Standard Expanded, k = 1.96

Length (mm) 0.79 1.55
Width (mm) 0.54 1.05
Depth (mm) 0.62 1.22

Table 4
Percentage wall loss evaluation.

Wall loss (%) Depth (mm) Averaged estimated depth (mm) Quality (%)

75% 5.63 5.2 88.5
50% 3.75 2.7 72.0
25% 1.88 1.2 63.5

the estimated length and width of all six measurements, which are
presented in Table 3.

As can be seen from measurement uncertainty, by taking a 95%
coverage probability, the obtained expanded uncertainty is considered
as the best estimate of the correction with the measurement error. The
length is estimated to be 70.5 ± 1.55 mm, the width is 33.7 ± 1.05 mm,
and the depth is 6.1 ± 1.22 mm. Although the number of repetitions
is limited, the initial error estimates and analysis of measurement
uncertainty provide a strong foundation for showcasing the potential
of uncertainty estimates provided by the GUM. Furthermore, given
the capability of the integrated robotics platform to support multiple
SLAM-based data collections, a more robust and holistic uncertainty
estimation model can be constructed by performing more experiments.

4.4.3. Performance evaluation for varied defect depth and shape
In industrial applications, the assessment of Percentage Wall loss

(%WL) through NDE inspection is of utmost importance for ensuring
structural integrity and overall safety. Additionally, the presence of
irregularly shaped defects adds further complexity to the inspection
process. Therefore, we further explore the depth estimation and irreg-
ular shape estimation capabilities of the proposed SL sensor in this
section.

In our previous investigation, we focused on analyzing the recon-
struction performance of the defect with 100% WL. Now, we have
extended our study by adjusting the depth of the defect to different
levels, specifically 75%, 50%, and 25% WL. This adjustment reflects
a reduction in the magnitude of wall loss. To quantitatively assess
the quality of depth reconstruction, three measurements are obtained
for each scenario. The depth estimation quality is evaluated using the
following formula:

𝐷𝑄𝑢𝑎𝑙𝑖𝑡𝑦 = 1 −𝐷𝑒𝑟𝑟𝑖 = 1 − 1
𝑁

𝑁
∑

𝑖=1
(
|

|

𝐷𝑖 −𝐷𝐺𝑇
|

|

𝐷𝐺𝑇
) (32)

where |.| denotes the absolute value. The estimation quality is deter-
mined by the average percentage difference between the estimated
depth and the actual depth over 𝑁 times measurements. The results
of these averaged depth estimations are presented in Table 4. The
results indicate that the proposed method successfully retrieves defect
depth information for varying extents of wall loss. The accuracy of the
depth estimation improves as the defect depth increases, reaching up
to 88.5% for the 75% WL defect. The shallowest defect with a depth
of 1.88 mm, although may have a higher estimated error compared to
the deeper defects, is still detectable.

Furthermore, reconstructed cylinders for each of the changed depths
are shown in Fig. 17. The corresponding results effectively highlight
the variations in the shape of the reconstruction as the defect depth
diminishes. Overall, all kinds of defect shapes are able to be depicted,
especially for the 75% WL and 50% WL case, which provides clear
visibility and characterization of the defect. However, for very shallow
depths of 25% WL, although the defect area can still be highlighted,
11
Fig. 17. Reconstruction performance comparison among different %WL: (a) 75%WL;
(b) 50%WL; (c) 25%WL.

Fig. 18. (a) Scratch-like defects; (b) Reconstruction performance of scratch-like defects.

the differentiation and completion of the defect edges become more
difficult. Therefore, as the defect depth decreases, the defect edges
may appear less distinct or fragmented, potentially resulting in an
incomplete representation of the defect’s shape and boundaries. The
main reason for the correlation between defect depth and the detection
performance of the proposed SL sensor is attributed to its detection
principle. In detail, deeper defects will cause more significant dis-
tortions in the projected color pattern, resulting in clearer and more
distinguishable outliers. Therefore, the subsequent registration process
can effectively identify and isolate these outliers, facilitating accurate
defect detection and localization.

Moreover, unlike uniform or regular defects, scratch-like defects
can have complex geometries and inconsistent depths. Detecting and
characterizing scratch-like defects allows us to gain insights into the
system’s performance in detecting and characterizing defects with di-
verse geometric characteristics. In this study, three scratch-like defects
with various shapes and depths in the pipe are investigated. As the
varying shape and depth are difficult to track, the maximum length,
width, and depth of each defect are measured, which serves as a
reference. The scratch-like defects and estimated size are shown in
Fig. 18(a).

From the reconstructed cylinder depicted in Fig. 18(b), it can be
seen that although the complete shape of the scratch-like defects can-
not be clearly reconstructed due to their shallow depth and irregular
shapes, the system is able to detect and locate these shallow defects.
This demonstrates the capability of the proposed system to identify
and characterize minor surface irregularities, even when the depth
and shape information is limited. Besides, while defect 2 has a larger
maximum size compared to defect 3, its lower %WL results in reduced
shape information, evident in the lower intensity level and less distinct
defect edges. This emphasizes the importance of defect depth in the
reconstruction process, where accurate depth estimation significantly
contributes to the overall effectiveness and reliability of the system
in capturing and characterizing defects of varying shapes. Overall,
the sensitivity of the proposed system in identifying minor irregular-
ities or deformations on the inner pipe surface has been highlighted,
demonstrating its capability in detecting even subtle defects.
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5. Conclusion

This paper proposes a comprehensive and practical IMU-assisted
robotic SL sensing system with enhanced registration and defect es-
timation solutions for pipeline detection. The framework relies on a
RANSAC-assisted cylindrical fitting registration algorithm and iner-
tial and odometry measurements for obtaining the global and local
positioning, which enables accurate 3D profiling. Instead of a direct
matching of the point clouds, the proposed registration algorithm
exploits the geometry of the pipe and certain sensor characteristics to
enable accurate registration even in the presence of defects. The input
from IMU is critical for accurate data reconstruction in the presence
of rotation and the absence of features by accurately correcting the
rotation in the experiment. The wheel encoder provides a precise robot
location, which is beneficial for concurrent 3D data registration and
defect measurement. Furthermore, the uncertainty sources in this SL-
based sensing system are described in detail, providing a guide for
future uncertainty analysis. The proposed registration algorithm is first
validated with both simulations and experimental data. Based on the
selected shape-based parameters, the proposed registration method is
proven to be more efficient and reliable compared to other states of art
methods like ICP. The results show that the proposed framework is able
to provide a robust and reliable 3D defect reconstruction solution in
terms of varying defect shape and depth. The robot-enabled SL sensing
system is able to provide reliable and robust repeated measurements,
which provide a basis for a more accurate measurement uncertainty
estimation with the GUM-based uncertainty model. Therefore, the pro-
posed integration work shows great potential for high reliability and
efficiency in visual-based pipeline inspection.
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Corrigendum 

Corrigendum to “IMU-assisted robotic structured light sensing with 
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