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ABSTRACT

GLIDING ROBOTIC FISH: DESIGN, COLLABORATIVE ESTIMATION, AND
APPLICATION TO UNDERWATER SENSING

By

Osama Nasr Ennasr

Autonomous underwater robots have received significant attention over the past two decades due to

the increasing demand for environmental sustainability. Recently, gliding robotic fish has emerged

as a promising mobile sensing platform in versatile aquatic environments. Such robots, inspired by

underwater gliders and robotic fish, combine buoyancy-driven gliding and fin-actuated swimming

to realize both energy-efficient locomotion and high maneuverability. In this dissertation, we first

discuss the design improvements for the second-generation gliding robotic fish “Grace 2”. These

improvements have transformed the robots to underwater sensing platforms that can be modified to

fit the requirements of a specific application with relative ease.

We focus on the application of detecting and tracking live fish underwater, which is an important

part of fishery research, as it helps scientists understands habitat use, migratory patterns, and

spawning behavior of fishes. The gliding robotic fish has demonstrated its ability to detect special

acoustic signals emulating tagged fish through a series of trials in Higgins Lake, Michigan. These

tests have also validated a gliding-based strategy for navigating to a GPS waypoint, and offered

insight into the limitations of the current design. Additional improvements are proposed to allow

these robots to glide at larger depths and perform more interesting working patterns underwater.

Motivated by the problem of tracking real fish, we consider the case where multiple robots

localize and track a moving target without the need for a centralized node. We present theoretical

treatment on how a network of robots can infer the location of an emitter (or target), and then track

it, through a time-difference-of-arrival (TDOA) localization scheme in a fully distributed manner.

In particular, we utilize a networked extended Kalman filter to estimate the target’s location in a

distributed manner, and establish that successful localization can be achieved under fixed and time-

varying undirected communication topologies if every agent is part of a network with a minimum



of 4 connected, non-coplanar agents. We further propose a movement control strategy based on

the norm of the estimation covariance matrices, with a tuning parameter to balance the trade-off

between estimation performance and the total distance traveled by the robots.

Finally, motivated by the distributed localization problem, we investigate amore general problem

of distributed estimation by a network of sensors. Specifically, we consider the class of consensus-

based distributed linear filters (CBDLF) where each sensor updates its estimate in two steps: a

consensus step dictated by a weighted and directed communication graph, followed by a local

Luenberger filtering step. We show that the sub-optimal filtering gains that minimize an upper

bound of a quadratic filtering cost are related to the convergence of a set of coupled Riccati

equations. Then we show that the convergence of these coupled Riccati equations depends on

the notion of squared detectability for the networked system, and proceed to provide necessary

conditions that link the convergence of the coupled Riccati equations to the network topology and

consensus weights of the communication graph.
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CHAPTER 1

INTRODUCTION

There is growing interest in monitoring aquatic environments, due to the emerging problems

of environmental pollution and expanding demand for sustainable development. Such pollution

involves various types of contaminants, including industrial waste, chemicals, and bacteria, to name

a few. The pollution could happen in different aquatic environments, such as ponds, rivers, lakes,

and even the ocean. For that reason, underwater robots are increasingly drawing attention in aquatic

sensing. The past decade or so has seen great progress in the use of robotic technology in aquatic

environmental sensing.

In this dissertation, we focus on the application of these robots to localization and tracking

of acoustically tagged aquatic animals. For the remainder of this introduction, we discuss the

existing methods for acoustic telemetry in aquatic environments, and conduct a brief survey of the

technologies used in that field. We then present the contributions of this research to advancing

acoustic telemetry. Specifically, we discuss the design improvements to gliding robotic fish that

facilitated carrying out acoustic telemetry experiments, and theoretical work on how networks of

robots can collectively localize and track a moving target or estimate the state of a dynamical

system.

1.1 Acoustic Telemetry in Aquatic Environments

Tracking of aquatic animals presents an important problem in fishery research and is paramount

to improving our understanding of aquatic ecosystems. Acoustic telemetry is often used by re-

searchers to collect information about aquatic animals, and study their migration, habitat use, and

survival. Acoustic telemetry systems consist of two main components: transmitters which broad-

cast a series of sound pulses (or pings) into the surrounding water, and receivers that listen to such

pings and record the time and corresponding ID of any detection. Animals can be tagged with

acoustic transmitters (see Fig. 1.1) and their movements can be tracked by stationary networks

1



Figure 1.1: Acoustic tag surgically implanted into fish (Source: Great Lakes Fishery Com-
mission).

of hydrophones or acoustic receivers that can identify acoustic-tagged animals in their vicinity

[4, 5, 6, 7].

Recent improvements in acoustic telemetry technology have advanced studies of long-term

spatiotemporal ecology and behavior of aquatic organisms [8, 9]. In particular, fish movement

tracking information obtained via acoustic telemetry has provided insight far superior than what can

be obtained by direct observations or traditional surveymethods (i.e., trawls, gill nets). Observations

from such networks have already been used to improve control and assessment of invasive species,

gain new insights into spawning behavior and habitat requirements of fish, and describe movements

of high-valued stocks [8, 7]. In the future, telemetry promises to address many critical uncertainties

in fishery research and aquatic ecosystems. However, logistical and economic constraints may

preclude use of receiver networks to fill gaps in understanding of animal movements, especially in

large systems and extreme environments.

Due to the limited detection range of these receivers, such acoustic telemetry systems are limited

to fixed areas. Autonomous underwater vehicles (AUVs) are becoming more common telemetry

assets as receivers can be self-contained and attached as a payload, or they can be integrated for real-

time detection while simultaneously measuring physical and biological properties of the aquatic

environment [10, 11]. For example, buoyancy-driven gliders with integrated or externally mounted
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Figure 1.2: Example of OceanServer Iver2 propelled AUV used in acoustic telemetry [18].

receivers have been used to study sturgeon and shark habitats [12, 13, 14], stereo-hydrophone

acoustic receiver systems have been integrated into propelled AUVs to track and follow leopard

sharks [15], and receivers and hydrophones have also been externally mounted and integrated into

a propeller-driven AUV [16] and a wave glider for real-time detections of tagged marine life [17].

Figs. 1.2–1.3 show examples of different AUVs equipped with acoustic receivers.

Each of these vehicles has its unique advantages and disadvantages. Propelled AUVs (e.g.,

REMUS-100 [16], and OceanServer Iver2 [18]) can overcome large currents and surface waves,

and are capable of traveling at higher speeds than other unmanned vehicles. The main drawback

for these vehicles is the power requirement needed for the propellers, limiting deployment duration

in the field. Another popular class of AUVs is wave gliders, where a surface float that utilizes wave

energy tomove forward is attached to an underwater sub via a tether [11]. The energy-efficient nature

of wave gliders, such as the Liquid Robotics Wave Glider used in [17], allows them to be deployed

for months at a time. Moreover, accurate positioning of the surface float is readily available through

GPS, along with reliable communication for the duration of the mission. The main limitation

of wave gliders is that any underwater instrumentation needs to be tethered to the surface float,

limiting the depth at which such instrumentation can be deployed, and introducing tether dynamics
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Figure 1.3: Exampe of a Liquid Robotics wave glider AUV used in acoustic telemetry [17].

that should be considered for accurate representation of the underwater environment. Underwater

gliders are another class of energy-efficient AUVs that travel by changing their buoyancy and center

of gravity. Underwater gliders, such as the Slocum glider [3], have been widely used in a variety

of underwater applications [12, 10]. Like wave gliders, the energy efficient nature of these robots

makes them ideal for long-duration missions. However, unlike wave gliders, there is no tether

involved with these robots, allowing for sampling of water environment at different depths up to the

depth rating of the vehicle. The biggest challenges with these robots involve underwater localization

and communication since RF signals do not penetrate water effectively. These vehicles often record

data while underwater, and surface occasionally to download or offload this data.

1.2 Beyond Presence-Absence Information

In addition to carrying acoustic receiver into areas that are not covered by stationary receivers,

AUVs can also carry a variety of environmental sensors. Measurements from these sensors can

further help characterize the interaction between aquatic animals and their environment. These

sensors allow researchers to monitor the external environment of fishes, allowing them to address

4



Figure 1.4: Acoustic receivers deployed across theGreat Lakes (Source: Great LakesAcoustic
Telemetry Observation System).

biological questions that were previously difficult (or impossible) to answer.

Acoustic receivers provide information about the location of tagged fish. When a signal

is identified, the tag’s unique ID code is saved with the date and time. The data from any

single receiver provide a record of each visit to that location by a tagged fish. Researchers often

deploy many receivers over large regions to understand the movement patterns of tagged fish

(see Fig. 1.4). Consequently, the fish positioning resolution is defined by the detection range of

individual receivers, which is usually on the order of 100 – 1000 m.

Fine-scale fish positioning (at the resolution of a few meters to tens of meters) can be achieved

with a network of receivers using time-difference-of-arrival (TDOA) methods. When the same

signal is detected by multiple receivers, it is possible to infer the location of the tag from the

differences in detection times. Such methods can provide a more detailed understanding of fish

behavior. Networks of AUVs equipped with acoustic receivers hold great potential in understanding

aquatic ecosystems, and advancing the field of acoustic telemetry. To effectively utilize such

networks, algorithms should rely on distributed processing of information and cooperation between
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the robots to achieve specific tasks.

1.3 Overview of Contributions

The contributions of this research reside mainly in improving the design of the gliding robotic

fish, investigating its applicability to acoustic telemetry, and theoretical treatment of distributed

localization and estimation using robotic networks. The details are as follows.

1.3.1 Improvements to Gliding Robotic Fish

Given the ever-changing and unpredictable nature of the environments in which they operate,

robots employed for underwater missions need to be both highly energy-efficient and maneuverable

[19]. Gliding robotic fish, a new type of underwater robots, has emerged as a promising mobile

sensing platform for monitoring aquatic environment. Such a robot combines the advantages of

both underwater gliders and robotic fish and features long operation duration along with high

maneuverability. This makes the gliding robotic fish well suited for a variety of underwater sensing

applications.

While the first-generation design of these robots was successfully used in sampling harmful oil

and algae bloom [20, 21], some aspects of the design needed to be re-addressed. The design of

the gliding robotic fish was improved to increase the serviceability of the robots by incorporating

a resealable design. This facilitated the rapid testing of different electrical designs, and allowed

regular inspection and maintenance to be performed on these robots. The computational power,

data storage capacity, and battery capacity of these robots were also dramatically improved to

facilitate carrying out longer missions. The new design also allows for a larger and replaceable

sensor payload that can be customized to fit different applications.

Additional improvements to the design are proposed, which would allow for further modularity

of the system and reduction of the manufacturing and fabrication costs.
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1.3.2 Application to Acoustic Telemetry

Gliding robotic fish can be modified to carry an acoustic receivers to detect, and potentially track,

tagged fish in areas where it would be difficult to install stationary receivers. The successful

development of gliding robotic fish has allowed for the investigation of the robot’s capability in

detecting and tracking tagged fish.

A series of field trials have been conducted in Higgins Lake, Michigan, to evaluate the use of

these robots asmobile receiver platforms for detecting acoustic signals in a challenging environment.

A self-contained acoustic receiver was attached to the a gliding robotic fish prototype, and the

detection efficiency of the mobile receiver was compared to that of stationary receivers. Further

trials were conducted to study the factors that affect the detection efficiency of the mobile receiver,

such as depth underwater, robot heading relative to transmitter, and pitch angle of the robot.

While the detection ranges for this mobile receiver varied between trials, the results obtained

from these trials showed that the detection efficiency of the mobile receiver is comparable to that

of stationary receivers at distances up to 600 m. Furthermore, the results show that the detection

efficiency of the mobile receiver degrades significantly if the mobile receiver is facing away from

the tag. The results also indicate that the depth and pitch of the robot also affect the detection

efficiency of the mobile receiver. However, the impact of these variables is less paramount than

that of the distance between the receiver and transmitter, or that of their alignment.

These trials suggest that such mobile receivers can be utilized for active tracking of tagged

animals. However, care must be taken when designing tracking controller in order to maximize

the alignment between the receiver and the transmitter. The trials have also offered insight into

the limitations of the current design, and additional work is proposed to further characterize the

performance of such mobile receivers.

1.3.3 Distributed Localization and Tracking of a Moving Target

Motivated by the problem of tracking live fish through acoustic signals by a robotic network,

analytical work is completed on distributed target localization and tracking using a network of
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mobile agents. Time-difference-of-arrival (TDOA)-based algorithms are widely used for precise

localization of a target, examples of which extend beyond acoustic telemetry in fishery research

[22], to wireless ranging radar systems and cellular positioning systems [23]. However, much of

the work on TDOA-based localization in the literature adopts a centralized approach, in which a

reference node is chosen and the times of arrival (TOA) of the emitted signal for all other nodes

in the network are subtracted from the reference node’s TOA, generating TDOA measurements at

fusion hub.

Due to power and bandwidth constraints in robotic networks, centralized information processing

is often infeasible, particularly for large-scale and unreliable networks. Moreover, some sensors

cannot transmit theirmeasurements to the reference node due to their limited communication ranges.

This has motivated us to investigate a completely distributed approach for localization of a moving

target. It is shown that source localization is not possible (centrally, and therefore distributively)

when the total number of TDOAmeasurement is insufficient. Then, we demonstrate that the target’s

position can be successfully estimated in a distributed manner if and only if every agent is part of a

connected network that collectively has a sufficient number of TDOA measurements, even if each

agent has an insufficient number of measurements.

Estimation of the target’s location is achieved without relying on a centralized node, and without

requiring all agents in the network to be communicating with one another. Necessary and sufficient

conditions on the underlying bidirectional communication graph are derived to ensure successful

localization of the target. Moreover, tracking of themoving target is examined through a coordinated

moving strategy that can be tuned to emphasize estimation performance or energy conservation,

depending on the application.

1.3.4 Distributed Estimation of Linear Time-Invariant Systems

The problem of distributed localization of a moving target has motivated the analysis of a more

general application of networked systems: the distributed estimation problem. Specifically, we

examine the problem of estimating the state of a linear time-invariant system that is monitored by
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a network of sensors. It is assumed that the interactions between the sensing sites are dictated by

a weighted directed graph. Under this distributed approach, each sensor site only has access to its

information and to that of the sensors in its neighborhood. While the analytical results obtained

here do not directly apply to the distributed localization problem, these results serve as a building

block for later investigation of time-varying dynamical systems monitored by sensor networks.

This distributed filtering problem has received significant attention over the past years, and

different ideas have been proposed to effectively deal with this problem[24, 25, 26, 27, 28, 29].

We focus on single-time-scale algorithms in which data fusion occurs once per time step of

plant dynamics due to bandwidth and power constraints presented in networked applications. In

particular, we consider the class of consensus-based distributed linear filters (CBDLF) where each

sensor updates its estimate in two steps: a consensus step dictated by a weighted and directed

communication graph, followed by a local Luenberger filtering step.

We then present sub-optimal filtering gains that minimize an upper bound of a quadratic filtering

cost, and show that these filtering gains are related to the convergence of a set of coupled Riccati

equations. While it has been shown that the convergence of these coupled Riccati equations is

related to the feasibility of a set of linear matrix inequalities (LMIs) [30], these conditions do

not, in general, shed light on the network conditions required to satisfy such LMIs. The work

presented in this dissertation utilizes some of the results developed in the Markovian jump linear

systems (MJLS) literature to connect the convergence properties of these coupled Riccati equations

to certain conditions on the network topology and consensus weights.

1.4 Dissertation Organization

The remainder of this dissertation is organized as follows. In Chapter 2, the design concept

for the gliding robotic fish is revisited, and the design improvements that the new generation of

gliding robotic fish has seen are highlighted. Then, the capability of this robot in advancing acoustic

telemetry in fishery research is presented in Chapter 3 through a series of field trials that were carried

out in Higgins Lake, Michigan. In Chapter 4, a detailed discussion on localization of a moving

9



target using time-difference-of-arrival (TDOA) measurements by a network of agents is presented.

This is motivated by the problem of tracking real fish, where multiple robots need to localize and

track a moving target, without the need for a centralized node to collect all measurements and

propagate an estimate of the target’s position back to the network. This problem is expanded on in

Chapter 5, where we consider the more general problem of distributed estimation of a dynamical

system monitored by a network of sensors. Finally, concluding remarks are provided in Chapter 6.
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CHAPTER 2

DESIGN IMPROVEMENTS FOR GLIDING ROBOTIC FISH

The design concept of a gliding robotic fish comes from energy-efficient underwater gliders and

highly maneuverable robotic fish. On the one hand, underwater gliders are known for their great

energy-efficiency and long-duration operation in oceanographic applications [31]. An underwater

glider utilizes its buoyancy to enable motion without any additional propulsion and adjusts its center

of gravity to achieve certain attitude, which results in glide and thus horizontal travel. Since energy

is needed only for buoyancy and center-of-gravity adjustment when switching the glide profile,

underwater gliders are very energy-efficient, as proven by the great success of the Seaglider [2] and

SLOCUM [3] (Figure 2.1). The maneuverability of underwater gliders, however, is quite limited.

The large size (1– 2 m long), heavy weight (50 kg and above), and high cost [31] of these vehicles

also impede their adoption in the application of networked sensing and in versatile environments

like ponds and inland lakes.

On the other hand, over the past two decades, there has been significant interest in developing

robots that propel and maneuver themselves like real fish do. Often called robotic fish (Figure 2.2),

they accomplish swimming by deforming their body and using fin-like attachments [32]. In many

designs, a fish-like flapping tail is used to provide propulsion force and a biased tail angle is applied

Figure 2.1: The SLOCUM AUV [3].

11



Figure 2.2: Robotic fish from Smart Microsystems Lab at Michigan State University.

to realize turning. Due to the similarity to real fish and the fact that the rotation of the tail fin

is usually enabled by a motor that is easy to control and fast in response, robotic fish typically

have high maneuverability (i.e., small turning radius). However, as the forward propelling force is

generated from the flapping motion of the fins, such robots require constant actuation for swimming

and cannot work for extended periods of time without battery recharge.

2.1 Overview of Gliding Robotic Fish

Inspired by the design and merits of both underwater gliders and robotic fish, a new type

of underwater robots, gliding robotic fish, has emerged as an underwater sensing platform [1].

A gliding robotic fish combines both mechanisms of gliding and swimming, featuring energy

efficiency and high maneuverability at the same time. Such a robot would realize most of its

locomotion through gliding like underwater gliders, by utilizing its buoyancy to enable motion

without any additional propulsion, while it can adjust its center of gravity to achieve a certain

attitude. It would use actively controlled fins to achieve high maneuverability, during turning

and orientation maintenance. Of course, fins can also provide additional propulsive power during

locomotion if needed.

Table 2.1 lists some of the aspects reported in [1] for an experimental prototype of the gliding

robotic fish (Fig. 2.3). The smaller dimension of Grace compared to traditional underwater gliders

proved to be valuable in relatively shallow water environment, such as lakes, rivers, and ponds,
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Figure 2.3: First-generation prototype of Gliding Robotic Fish ”Grace“ from [1].

Table 2.1: Reported parameters of first-generation gliding robotic fish “Grace” in [1].

Parameter Description

Hull dimensions (L x W x H) 65 x 15 x 18 cm
Tail to nose length 90 cm
Wingspan 75 cm
Weight 9 kg

Payload

Turner Design Cyclops
7F sensor (crude oil or
blue green algae sensor)
Temperature sensor

where larger gliders are not quite suitable due to their large size and high cost. This prototype

was successfully deployed for oil spill detection in Kalamazoo river, Michigan, and for monitoring

algae bloom in Wintergreen lake, MI [20, 21].

However, there were several aspects of the first-generation design that needed improvement.

First, the hull design of Grace in [1] was completely sealed, which made servicing the robot pro-

hibitive, as accessing the internal electronics would require destroying the robot’s shell. Second,

the payload carrying capabilities of the first-generation design were limited to one or two small

components, and would need external attachments (e.g., external weight, foam blocks) to accom-

13



Figure 2.4: Second-generation (Grace 2) prototypes of gliding robotic fish.

modate the buoyancy of the payload. Finally, the battery capacity of the original design limited its

application to the order of several hours to one day.

2.2 Design Improvements

The second-generation gliding robotic fish, which we refer to as “Grace 2”, has seen several

electrical and mechanical enhancements to improve its applicability and prolong its operational

time. In this section, we discuss these design improvements that were implemented on two new

prototypes (see Fig. 2.4). Some of these improvements were done incrementally over the period

of this study, which we subversion as 2.0, 2.1, and 2.5. We will use the term “Grace 2” when

we discuss fundamental changes to the design when compared to first-generation prototype in [1],

while we use “Grace 2.x” when discussing improvements that were accommodated in that specific

subversion.

2.2.1 Mechanical Improvements

The new mechanical design for Grace 2 addressed the issues of serviceability and payload carrying

capacity1. To address the issue of serviceability, a 3D printed interface was introduced between the

1While the development of the Grace 2 robots involved several people, the majority of the
fabrication and mechanical work on these robots was completed by John Thon from the Smart
Microsystems Lab at Michigan State University. The majority of the electrical improvements was
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Figure 2.5: Side view of the Grace 2.5 design with the interface open depicting (a) 3D
printed interface, (b) electronics board, (c) water-proof switching connector, (d) water inlets,
(e) gliding mechanism, (f) quick-disconnect system, (g) adjustable balance weights, and (h)
batteries.

nose of the robot and the rest of its body. This interface, when bolted together, formed a water-tight

seal by compressing a custom O-ring at the interface. To maximize the use of space, batteries were

stored in the robot’s nose, and a water-proof connector was introduced to operate as a switch for

the system.

Two measures were taken to allow for larger, and possibly variable, payload carrying capacity.

First, a larger buoyancy-control tank, with a volume of approximately 190 mL, was utilized for the

second-generation robots. To deal with the serviceable nature of the robot, a 3D printed piece was

designed to fit the buoyancy-control tank and held water-tight quick disconnects that mated with the

water inlets from the nose. The movable mass and the buoyancy tank were fixed together to form

what we refer to as the “gliding mechanism”, which could slide in and out of the robot’s main body

for maintenance and inspection. The second measure allowed for variable weights to be attached

to the bottom of the gliding mechanism. These weights are typically adjusted and moved around

before deployment in order to accommodate the buoyancy and weight distribution of the payloads.

completed by the author.
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Table 2.2: Mechanical specifications for Grace 2.

Component Description

Hull dimensions (L x W x H) 103 x 20 x 30 cm
Tail to nose length 140 cm
Wingspan 60 cm
Weight 20 kg
Robot hull material Carbon fiber with 3D printed interface
Buoyancy Control 190 mL
Pitch Control + 40◦, -25◦

Payload

Dissolved Oxygen and Temperature sensor
Photosynthetically Active Radiation sensor
Freshwater Blue Green Algae sensor
Chlorophyll sensor
Acoustic receiver

Fig. 2.5 depicts a side view of a Grace 2 prototype and its different components.

The need for larger buoyancy control, payload carrying capacity, and battery capacity required

a larger body hull that can accommodate all these components. Table 2.2 lists the mechanical

specifications of the Grace 2.

2.2.2 Electrical and System Improvements

The serviceable nature of the new design allowed us to rapidly prototype and test out different

electrical systems and components to improve the robot’s functionality. The Grace 2 design

implemented a changeable sensor harness that could be replaced to accommodate a different set of

sensors, and a connector was introduced between each of the shell components and the on-board

electronics.

The initial electrical design for Grace 2.0 utilized an architecture similar to the first-generation

Grace, with the exception of introducing a second microcontroller (MCU) dedicated to reading and

communicating with the sensor bundle. The power system for the Grace 2.0 design used linear

regulators to regulate battery voltages to 3.3V and 5V, which provided power to the electronics

and the sensors. However, due to the relatively high power demand of the sensors along with the

big difference between the battery voltage and the regulated voltages, the linear regulators became
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Figure 2.6: A gliding robotic fish modified to carry (a) a propeller, through the introduction
of (b) an auxiliary port.

very hot in a very short period of time, causing the electronics to behave erratically and the entire

system to shut off. The electrical design for Grace 2.1 used a new power system architecture,

in which the linear regulators were replaced with switching regulators. The introduction of these

regulators drastically improved the stability of the electronics and allowed us to performmeaningful

experiments (which we present later in Chapter 3). Additionally, the wiring harness inside the robot

was simplified to only two connectors, one for the shell components (namely, theGPS, tail servo, and

pressure sensor), and one for the sensor bundle. The Grace 2.1 design relied on the same dual-MCU

architecture used in Grace 2.0, in which one MCU was dedicated to reading and communicating

with the set of environmental sensors, while another MCU was responsible for controlling the

actuators, reading essential sensors (i.e., depth, GPS, and IMU), and communicating with a base

station.

The design in Grace 2.0 and 2.1 did not implement on-board storage of the data. Instead, the

robot periodically sent essential data (i.e., UTC time, GPS position, and IMU info) to a laptop over

the wireless XBee channel. When the robot performed a dive, all these parameters along with the

robot depth were temporarily stored in memory until the next time the robot surfaces, at which time

the data was sent over the wireless channel.

17



The dual MCU architecture was somewhat limiting since all tasks needed to be implemented on

this embedded structure. Furthermore, the lack of on-board storage also limited the applicability

of these robot. Therefore, a new revision of the electronics was introduced in Grace 2.5 in which

a Raspberry Pi (RPi) computer was included to handle high-level tasks (e.g. communicating with

the base station, mission control, data storage). The RPi computer freed the MCUs to perform

low-level tasks only, such as reading sensor value and controlling actuators. Internal storage onto

an 8 GB mirco-SD card was also integrated with the latest design, and the robot logged all data

at 5 s intervals. The introduction of the RPi computer also allowed for rapid testing of different

ideas without needing to open the robot and adjusting the low-level microcontroller code. It

also provided the capability of implementing an sophisticated algorithms and systems, such as the

Robot Operating System (ROS). Finally, the Grace 2.5 design was modified to support an additional

“auxiliary module” through an additional water-proof connector that can be used to connect another

sensor or actuator, such as a propeller (see Fig. 2.6). The components used in the final design of

Grace 2.5 are listed in Table 2.3.

2.3 Motion and Navigation

For gliding robotic fish, there could be various interesting motions generated by integrating the

gliding and swimming mechanisms. Two main steady-state motion profiles are typically used as

the regular working patterns for navigation and water sampling. One is gliding in the sagittal plane,

and the other is spiraling in the 3D space.

Gliding is also the common operating mode for traditional underwater gliders (Fig. 2.7(a)). In

the zig-zag trajectory, the gliding robotic fish only consumes energy during the transition between

descending and ascending, which makes the gliding robotic fish highly energy-efficient. The

other motion, spiral in the 3D space, allows for sampling water columns using gliding robotic fish

(Fig. 2.7(b)). A water column is a conceptual narrow volume (like a narrow cylinder) of water

stretching vertically from the surface to the bottom. Water column sampling is a routine surveying

method in environmental studies. This motion is achieved by incorporating the steady gliding with
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Table 2.3: Selected components for Grace 2.5.

Component name Component model

Processors Raspberry Pi Zero-W
(2x) Microchip dsPIC30F6014A

Battery

(3x) Batteryspace High Power Polymer Li-Ion,
18.5v@ 185Wh (Approximately 5 days of contin-
uous actuation with 1400 dive cycles at 5 minute
intervals)

Data Storage 8GB micro SD

Mass actuator Actuonix L16-P Miniature Linear Actuator with
Feedback

Buoyancy-control actuator ServoCity 6" Stroke 180 lb Thrust Heavy Duty
Linear Actuator

Tail servo motor ServoCity HS-7980TH
Pressure sensor Honeywell 40PC100G2A
GPS Unit GPS 18x LVC
Wireless module XBee-Pro 900HP RP-SMA
Wireless antenna 900MHz Duck Antenna RP-SMA
IMU VectorNav VN100S
Dissolved Oxygen and Temperature
sensor In-Situ RDO PRO-X

Photosynthetically Active Radiation
sensor LI-COR LI-192SA

Chlorophyll sensor Turner Designs Cyclops-7 Submersible sensors-C
Algea sensor Turner Designs Cyclops-7 Submersible sensors-P
Sensor bundle connector SubConn MCIL16-F/M
Aux port connector SubConn MCBH6-F
Switch/charge connector SubConn MCBH4-F

(a) (b)

Figure 2.7: Schematics of working patterns: (a) gliding in sagittal plane, and (b) spiraling in
3D space.
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Figure 2.8: A gliding robotic fish prototype performing a spiral during experiments in MSU
swimming pools.

a deflected tail. The non-zero angled tail fin will introduce a turning moment to the steady gliding

robot and lead to a 3D spiraling motion. With the actively-controlled tail, the gliding robotic fish is

capable of spiral motions with tight turning radius. If needed, a gradually changing tail angle will

form spiral-in or spiral-out 3D trajectories that can be used to orient the robot at a certain angle

while gliding.

When performing field tests with these robots (such as the tests we describe in Chapter 3), a

fundamental task is to navigate to a given GPS waypoint. We discuss two navigation schemes that

were implemented on these robots.

2.3.1 Swimming-based Navigation

The first navigation mode relies on continuously flapping the tail to propel the fish forward. The

tail bias and amplitude are updated to drive the robot to the desired location. The task is simplified

by assuming that the robot’s yaw angle, k, is a good measure of the robot’s heading, which can be

measured directly from the on-board IMU. The bearing angle, W, to the GPS target location is then

calculated. Figure 2.9 depicts the yaw and bearing angles.

A proportional controller with saturation is then used to compute the bias and amplitude based
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Figure 2.9: Yaw and bearing angles.

on the difference between the robot’s heading k and the bearing angle to target location W

U = k − W (2.1)

Figs. 2.10 and 2.11 show the bias and amplitude of the tail flapping as a function of the difference

U. The outputted tail angles from this computed bias and amplitude will always fall within the

limits of the servo motor, which are set to ±45◦.

2.3.2 Gliding-based Navigation

Swimming based navigation offers the benefit of a continuous GPS signal while swimming on the

surface. This simplifies the navigation task and makes swimming a viable strategy for accurate

navigation to target. However, due to the continuous flapping of the tail, swimming is generally

less efficient than gliding and should, therefore, be only used for navigation over a short distance.
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Figure 2.10: Tail bias vs. angle difference ".

Figure 2.11: Flapping amplitude vs. angle difference ".
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Figure 2.12: Tail deflection % vs. angle difference ".

For that reason, it is desirable to use the gliding mode to navigate from one point to another.

Gliding-based navigation begins by acquiring a valid GPS fix and calculating the bearing angle to

the target location. Once this process is completed, the robot begins diving by typical adjustment

of the mass position and net buoyancy. While diving, the tail fin is deflected at an angle X that is

proportional to the difference U. To prevent damage to the servo motor, the tail deflection angle

is saturated to ±45◦. Fig. 2.12 shows the relationship between the tail deflection angle and the

heading difference U during a dive.

When the robot completes a dive, it waits on the surface for another GPS fix before repeating

the process. During that time, the robot applies the swimming-based navigation using the latest

computed heading angle W to move towards the target GPS location.

2.4 Summary & Future Work

We discussed the design improvements implemented onto the gliding robotic fish originally

presented in [1]. The modified version significantly improved the serviceability, computational

power, payload-carrying capacity, and battery capacity of the robot. A new power design was
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Figure 2.13: Front view for components for next-generation design depicting individually
sealed for (a) electronics, (b) battery packs, (c) movable mass, and (d) buoyancy control tank.

introduced to efficiently power the various electronics and environmental sensors. Furthermore, a

new system architecture was implemented that included a Raspberry Pi computer which worked

alongside the embedded MCUs. The new RPi design helped separate high-level tasks (such as

communication, data storage, and task-specific algorithms) from low-level tasks such as control of

the robot’s actuators and communication with the various sensors. This, in turn, facilitated testing

out new ideas at a quicker rate, while also offering the convenience of a Linux-like environment

and all its available tools (e.g., ROS implementation).

The current robot design did, however, suffer from some issues that future work should address.

The main drawback that this design faced was the time and resources needed for fabrication and

manufacturing. Since this was a novel design, almost all mechanical components of the robot

needed to be custom-built (and at times hand-crafted) for this project. While the effect of such an

issue is expected to diminish if these designs are mass-produced, they still presented a bottleneck

for prototyping and rapid testing. As an alternative, future work should focus on reducing the cost

and time needed for fabrication. Currently, a design that utilizes individually sealed components

is being investigated. These components are to be built from readily available material, and

are expected to greatly speed up fabrication (see Fig. 2.13). Moreover, these individually-sealed

components are expected to improve the modularity of the robot, as future designs can use different
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combinations of these pre-built components depending on the tasks at hand.

The electrical system architecture of the next-generation robots will still use much of the

design elements developed here (e.g., power design and RPi architecture). However, there are still

additional features that need to be implemented in future designs. Specifically, next-generation

robots should focus on implementing underwater acoustic communication, satellite communication,

and solar charging for these robots. Moreover, new electrical systems should also mimic the

modularity of the mechanical components, such that these components offer “plug-and-play”

functionality.

The proposed advancements to the system design will allow for the implementation of more

interesting behaviors by next-generation robots. In particular, strategies for trajectory tracking and

depth maintenance are being investigated [33]. Moreover, the new set of electronics is expected

to facilitate fault detection, such as detecting hitting the bottom of a water body, which are useful

strategies for practical implementation of these robots.
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CHAPTER 3

CHARACTERIZATION OF ACOUSTIC DETECTION USING A GLIDING ROBOTIC
FISH AS A MOBILE RECEIVER PLATFORM

In this chapter, we present the applicability of Grace 2 to acoustic telemetry. Generally speaking,

TDOA algorithms rely on a target emitting a signal periodically, which is detected by special

receivers deployed either at fixed locations or on mobile robots. If multiple receivers detect the

same signal, it is possible to infer the target’s location using the differences between the detection

times at these receivers, which is explored in detail later in Chapter 4.

As the demand for AUVs to study ecology of fish and other aquatic animals increases, there

remains a growing need to understand how design elements, operational characteristics, and en-

vironmental conditions influence detection performance of telemetry-equipped AUVs. In this

chapter, we describe detection performance of an acoustic telemetry receiver mounted on Grace 2

during a series of field trials in a freshwater lake (Figs. 3.2– 3.4). Although the primary purpose

of field trials was to field-test hardware and software changes during development, detection per-

formance (efficiency) of the glider-mounted acoustic receiver was also evaluated during each field

test. Specific objectives were to (1) compare the detection performance (efficiency vs range) of

the AUV-mounted receiver to that of stationary receivers and (2) determine if the detection range

performance was related to the direction of travel (i.e., toward vs. away from a remote transmitter),

the robot depth, and the pitch during gliding. Environmental variables (wind, water temperature,

and acoustic noise) were also explored but data limitations prevented incorporating those data into

formal analyses. Results and lessons learned are expected to inform further development of gliding

robotic fish and improve the design of AUV-based telemetry performance assessments.
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Figure 3.1: Grace 2 carrying a forward-facing acoustic receiver.

3.1 Methods

3.1.1 Mobile Receiver

The ability of Grace 2 in carrying larger payloads has allowed us to mount a forward-facing acoustic

receiver on the robot (Fig. 3.1), and compare its performance to that of stationary receivers.

The GPS sensor (Garmin GPS 18x LVC) was used for obtaining UTC time and establish the

robot’s position when it is on the surface, while the pressure sensor was used to measure robot

depth underwater. The XBee wireless serial interface was used for communication with a laptop

on a boat close to the robot. This channel was used to send commands to the robot or query data

from the robot when it was on the surface.

As was discussed in Chapter 2, the hardware and software capabilities of the robot evolved over

the duration of this study. In the 2016 trial, all robot operations (i.e., control, communication, and

data processing) were implemented on the embedded MCU, and the robot sent its GPS position

along with a UTC time-stamp over the XBee channel every 5 seconds whenever it was on the

surface. When the robot performed a dive, it temporarily stored depth data that was time-stamped

and sent through the XBee channel upon surfacing. In 2017, the robot also temporarily stored
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Figure 3.2: Grace 2 at Higgins Lake, Michigan, 3 November 2017.

Figure 3.3: A gliding robotic fish prototype during field experiments in Higgins Lake.
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Figure 3.4: A gliding robotic fish prototype during field experiments in Higgins Lake.

orientation (yaw, pitch, and roll angles) information whenever it was underwater. In 2018, we

incorporated a Raspberry Pi Zero W that performed high-level tasks such as communication and

data storage. This allowed us to complement the original broadcasted messages by storing all

available data onto an on-board SD card every 5 seconds. This data consisted of GPS coordinates

and UTC time, environmental sensor readings, orientation of the robot (yaw, pitch, and roll angles),

positions of each actuator, and battery level.

3.1.2 Field Tests

A self-contained acoustic receiver (VEMCO model VR2Tx; 69 kHz) was attached to the robot as

a payload, and field trials were conducted in Higgins lake, Michigan, USA, during 2016 - 2018.

The receiver was mounted at the bottom of the robot, facing forward (Fig. 3.1). The receiver

measured temperature (internal), tilt (degrees from vertical), and environmental acoustic noise
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every 10 minutes. Detection performance was investigated as a function of distance between a test

transmitter or ‘tag’ and the receiver, robot direction (toward or away from tag), robot depth, and

robot pitch. Wind (from a regional model; see below) and environmental acoustic noise (from the

receiver) were also considered as possible explanatory variables but were not included in analyses.

Tests (‘runs’) were conducted on 11 November 2016, 3 November 2017, and 14-15 June 2018 in

Higgins Lake, Michigan, where water depths ranged between 10-20 m (Fig. 3.5; Table 3.1). These

sites were selected to facilitate field testing of navigation and actuation systems on a given day

and not necessarily with detection range tests in mind. During each trial, an acoustic transmitter

(VEMCO model V8-4H; source power level 147 dB re 1 `Pa @ 1 m) was deployed on a stationary

mooring (depth ranged 1.5–7.0 m among runs) and emitted a uniquely encoded signal every 24

seconds. The specific model tag was used because it provided a detection range amenable to the

field evaluation of the robot in the study system. Specific tag programming (24 s transmit interval)

was selected to ensure that testing would provide sufficient sample size for regression models and

to capture relatively fine-scale changes in variables of interest (e.g., depth, pitch).

For every test, a target GPS waypoint was sent to the robot from a laptop on a boat over the

wireless communication channel, and the robot was tasked with navigating to that location through

a series of dives. A depth of 4.5 m was deemed as the “safe” (maximum) diving depth for the

robot as the depth rating had not been established for the robot hull. Each dive was completed in

approximately 3 minutes on average. Robot heading was controlled by changes in tail position such

that the tail acted as a rudder during gliding to maintain course toward the target location. Between

dives, the robot remained on the surface for 20 seconds to ensure that a GPS lock was established,

and a new GPS position was obtained to calculate the desired heading angle.

3.1.3 Mobile Detection Range Tests

The main objectives for the 2016 trials were to (1) field-test hardware and software and identify

any necessary changes, and (2) establish the range of detection for the mobile receiver and compare

its detection performance with that of stationary receivers deployed at various distances from the

30



Figure 3.5: Lake tests (Panel A) Map of Higgins Lake, Michigan showing regions (red
rectangles) where gliding robotic fish GRACE was tested 11 Nov 2016 (panel B), 03 Nov 2017
(panel C), and 14-15 June 2018 (panels D-F) with stationary transmitter locations (green
circles), stationary receiver locations (yellow circles), and GPS locations (pink/red circles)
recorded by the gliding robotic fish during each run. GPS points are shaded along a gradient
from start (pink) to end (red) of each run.
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tag. Five acoustic telemetry receivers (VEMCO model VR2Tx 69 kHz) were deployed vertically

(hydrophone up) on stationary moorings, suspended 1.5 m below the surface in 7.3–10.0 m water

depth. Stationary receivers were arranged in a line with the transmitter such that the receivers were

spaced 200, 400, 600, 800, and 1000 m from the transmitter, which was suspended 1.5 m below the

surface in 11.0 m water depth. During the first trial (run 2016-1), the robot began navigating 996 m

from the transmitter, in a direction roughly parallel to the line of stationary receivers and toward the

transmitter. As the trial progressed, winds (approximately 4.9-5.8 m/s, based on a regional model)

moved the robot off course while it attempted to obtain a GPS fix. Magnetic disturbance, resulting

from the internal electronics and actuators, which affected the stability of the measured heading

angle using the on-board Inertial Measurement Unit (IMU), also contributed to the robot veering

off-course. Consequently, the robot was removed from water about 563 m from the transmitter, and

then returned to the water for a second trial (run 2016-2). During the second trial, the robot started

411 m away from the tag, and was removed from the water 288 m from the transmitter.

Prior to the next field test, robot navigation problems observed in 2016 were addressed. First,

the IMU was calibrated to reject larger magnetic disturbances, which improved the stability of

the measured heading angle. Additionally, to combat high winds, the robot was tasked with

“swimming” (by continuously flapping its tail) on the surface while waiting for a GPS fix.

After these corrections, a second field trial was carried out in 2017. During this trial (run

2017-1), the gliding robotic fish navigated from 389 m to less than 1 m from the tag, in a direction

roughly northwest. The tag was suspended 3.0 m below the surface in 19.8 m water depth.

Stationary receivers were not deployed during the test in 2017 due to logistical constraints. While

the windspeeds during this trial were close to those in 2016 (approximately 4.2 m/s, based on a

regional model), the provisions we took with surface swimming allowed the robot to complete

its task. During navigation, the tag transmitted 323 times and the robot repeatedly ascended and

descended between the surface and 4.5 m depth.

A third set of field trials were conducted in 2018 to investigate the effect of the robot’s direction

of travel, depth, and pitch on detection efficiency. In addition, four stationary receivers (R1–R4;
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Fig. 3.5) were deployed in roughly a square-shaped pattern to explore the utility of obtaining fine-

scale robot tracks using time-difference-of-arrival-based positioning (not evaluated in this work).

Stationary receivers were suspended vertically (hydrophone up) 4.7–19.8 m below the surface in

9.3–24.0 m water depth. A fifth stationary receiver was collocated with the stationary tag; both

were suspended vertically (hydrophone up) 4.6 m below the water surface in 9.1 m water depth.

The robot was tasked with navigating toward the tag during two runs (runs 2018-1, 2018-3) and

away from the tag during one run (run 2018-2). Similar to the trials in 2017, the robot was tasked

with swimming while awaiting a GPS fix on the surface to counteract surface waves that could push

the robot away from its desired course.

Water current and wind data (e.g., velocity and direction) were not measured at the site during

testing, but regional wind data were obtained from NCEP’s Global Forecast System [34] using the

R package RWind. Model-based estimates of mean wind speed and direction during 3-h intervals

(e.g., 00:00–02:59 UTC, 03:00–05:59 UTC, etc.) at 10 m above land surface were obtained for two

locations about 24 km west (85.0◦W, 44.5◦N) and 17 km east (84.5◦W, 44.5◦N) of the study site.

Mean speed and direction between the two locations were used to represent conditions at the study

site during the 3-h interval that contained each run.

3.1.4 Data Analysis

Transmitter detection efficiency curves were estimated for stationary and mobile receivers using

generalized additive models (GAMs) with binomial error structure1. GAMs were used because

they relax distributional assumptions and allow greater flexibility in modelling non-linear responses

than generalized linear models [35]. For example, a GAM allowed comparisons of the shape of

detection range curves among runs and between stationary and mobile receivers. First, the time

of each missed detection (i.e., transmitted but not detected) was estimated by sequencing every

24-s through each detection data set to identify time stamps that were not in the detection file

1Analysis of the acoustic detection data and the GAM models presented in this section were
prepared by Dr. Chris Holbrook from the US Geological Survey.
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Table 3.1: Summary of mobile range detection trials with GRACE at Higgins Lake in 2016,
2017, and 2018. Mean heading reflects the bearing from the first GPS measurement toward
the last GPS measurement in each run. Wind speed and direction (heading; note that this
is the direction the wind vectors are following, not “blowing from” as is customary) are
coarse-scale regional estimates based on the NCEP’s Global Forecast System, as described in
methods.

Run
ID

Date Time
(UTC - 4) Tag Lo-

cation

Distance to
tag (m)

Mean
Heading
(◦)

Wind
Speed
(m/s)

Wind
Heading
(◦)Start End Start End

2016-1 11/11/16
10:47

11/11/16
12:38 T1 996 563 219 (SSW) 5.8 187 (S)

2016-2 11/11/16
12:52

11/11/16
13:30 T1 411 288 214 (SSW) 4.9 182 (S)

2017-1 11/3/17
12:45

11/3/17
14:54 T1 389 8 303 (WNW) 4.2 148 (SE)

2018-1 6/14/18
18:06

6/14/18
19:00 T6 360 11 191 (S) 4.1 163 (SSE)

2018-2 6/14/18
19:20

6/14/18
21:13 T6 44 361 3 (N) 1.7 157 (SE)

2018-3 6/15/18
10:06

6/15/18
11:09 T7 408 10 8 (N) 1.9 324 (NW)

for the receiver. A binary indicator variable was used to represent detection (1) or non-detection

(0). All data types recorded by the robot (i.e., latitude, longitude, depth, pitch, water temperature)

were estimated at time of each detection or non-detection using time-based linear interpolation over

measurements recorded by the robot (Fig. 3.6–3.7). Detection efficiency curves were first described

separately for each run and for stationary and mobile receivers during each run, by fitting a GAM

to data from each run separately, except that runs 2016-1 and 2016-2 were combined. These GAMs

simply estimated the probability of detection (binomial response) as a function of distance between

tag and receiver (Fig. 3.8).

A GAM was fit to the data from runs 2017-1, 2018-1, 2018-2, and 2018-3 to estimate the

detection efficiency as a function of distance between receiver and transmitter, direction of robot

relative to transmitter (toward, away), robot depth (meters below water surface), and robot pitch

(degrees from horizontal). Runs 2016-1 and 2016-2 were not included in the model because (1)

there was little overlap in distances covered between those runs and others (Fig. 3.8); (2) they lacked
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pitch data; and (3) depth data were incomplete during those runs.Specifically, the model estimated

the log odds (logit) of the probability of detecting each transmitted tag signal as a function of the

predictors

;>68C (?) = 10 + 38A + BAC_38BC:38A + BAC_38BC:AD= + B34?Cℎ:38A + B?8C2ℎ:38A + Y

where 10 is the intercept; 38A is the fixed effect of direction; BAC_38BC:38A and BAC_38BC:AD= are

smoothed functions of distance for each direction and run; B34?Cℎ:38A and B?8C2ℎ:38A are smoothed

functions of depth and pitch for each direction; and Y is error assumed from an independent

draw from a normal distribution with zero mean and variance f2. Direction-specific smoothers

were included to estimate the partial effects of each level of each continuous predictor on the

response (detection efficiency). The run-specific smoother for distance was included to account

for run-specific variability in detection efficiency not explained by other predictors. To eliminate

confounding between run and direction, effects of direction were limited to contrast between runs

2018-1 and 2018-2, which occurred on the same day.This was accomplished by treating runs 18-1

and 18-2 as a single run (“18-1 & 18-2”) in the model. Thus, we assumed that differences between

runs 2018-1 and 2018-2 were attributed to change in direction relative to tag and not other variables

or conditions. This assumption is supported by similar detection ranges of stationary receivers

during those runs (Fig. 3.8C, 3.8D)

An added advantage of a run-specific smoother is that it allows exploration of the unique shape

of each curve that might inform future hypotheses about factors influencing the shape of the curve

during each run. While it is possible that some across-run variation could be explained by wind,

ambient noise, or water temperatures, our observational data set did not have replicate runs (wind,

water temperature) or sufficient within-predictor contrast (ambient noise) and thus we did not

include those variables in the model. Rather, we use those observations to generate hypotheses

from our descriptive analyses.

The model was fit to the data using the gam function in the mgcv library (v. 1.8.31) [36] in R

(v. 3.6.2)[37]. The basis for all smoothing functions was a cubic regression spline with shrinkage

(bs = “cs” in mgcv) and 10 knots. Shrinkage smoothers are useful for identifying non-significant
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Figure 3.6: Depth, pitch, and temperature profiles of gliding robotic fish Grace 2 during a
10-minute segment of run 2018-1 in Higgins Lake, with depths recorded by the on-board
sensors (open symbols) and estimated depths at the time of test tag signal transmissions
(red symbols). Horizontal broken lines show depth (panel A) and temperature (panel C) of
stationary transmitter at site T6.

smoothers by reducing the effective degrees of freedom to a value as small as zero [35]. All

smoothers were estimated using restricted maximum likelihood. Prior to model fitting, data were

checked for evidence of collinearity (correlations among predictors). Model fit was evaluated

by checking for concurvity (non-independence) among smoothers and evidence of non-normality

among residuals. Significance of each smoothing term was determined based on estimated degrees

of freedom and approximate p-value for the null hypothesis that the smoothing term was zero (see

Table 3.2). The significance level for all tests was 0.05. Partial effects plots (see Fig. 3.9) were

used to assess the influence of each smoother on the log odds of detection efficiency at each level of

the predictor. Plots of fitted values were used to assess the influence of each predictor on detection

efficiency during each run on the probability scale.
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Figure 3.7: Depth profiles of gliding robotic fish Grace 2 during a selected 100– to 300–m
segment of each run (panels A-D) in Higgins Lake, with locations of test tag transmissions
that were detected (closed symbols) or not detected (open symbols) by the on-board receiver.
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Table 3.2: Summary of parametric coefficients (linear terms) and smoothing terms from
GAM used to determine if detection range was related to distance from transmitter (Tag
Distance, in meters), direction of robot travel relative to transmitter (toward or away), robot
depth (Depth, inmeters fromwater surface), or robot pitch (Pitch, in degrees fromhorizontal).
Included for each parametric coefficient is the estimate, standard error (SE), test statistic (Z),
and p-value for the null hypothesis that the corresponding parameter is zero. Included
for each smoothing term is the estimated degrees of freedom (EDF), test statistic (62), and
approximate p-value for the null hypothesis that the smoothing term is zero. Bold faced
p-values are significant at significance level of 0.05.

Linear Terms Estimate SE Z p-value
(Intercept) -4.194 0.562 -7.466 8.24E-14

38A = C>F0A3 5.19 0.573 9.071 1.18E-19
Smoothing terms EDF j2 p-value

B(AC_38BC0=24) : 38A = 0F0H 6.33E-04 4.03E-04 0.318
B(AC_38BC0=24) : 38A = C>F0A3 1.432 3.313 1.55E-03
B(AC_38BC0=24) : AD= = 2017 − 1 2.085 6.316 3.62E-04

B(AC_38BC0=24) : AD= = 2018 − 1, 2018 − 2 2.480 46.726 1.25E-13
B(AC_38BC0=24) : AD= = 2018 − 3 1.223 3.417 2.09E-03

B(?8C2ℎ) : 38A = 0F0H 0.105 0.112 0.293
B(?8C2ℎ) : 38A = C>F0A3 1.103 5.804 8.15E-03
B(34?Cℎ) : 38A = 0F0H 1.256 11.658 3.06E-04
B(34?Cℎ) : 38A = C>F0A3 0.649 1.326 0.120

Table 3.3: Speed of the robot relative to ground from the field trials.

Component Description

Swimming speed 25 cm/s on average (20 to 30 cm/s)

Glide speed 13 cm/s on average (as low as 5 cm/s against current
and a high of 35 cm/s with current)

3.2 Results

A rough estimate of the robot’s glide speed and swimming speed relative to groundwas obtained

from the logged data and is shown in Table 3.3.

Estimated detection efficiency of the robot-mounted receiver was lower than concurrently-

operated stationary receivers during all three runs where stationary receivers covered the full range

of mobile runs(Fig. 3.8A, 3.8C, 3.8D). Scale and shape of detection curves from both stationary

and mobile receivers varied among runs. During 2016, when detection range for both stationary
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and mobile receivers was larger than during any other run, detection efficiencies for the mobile

receiver were only slightly lower than the stationary receivers up to 600 m from the transmitter, but

substantially lower at 800 m and 1000 m. The shape of the stationary range curve was unexpected

(e.g., higher efficiency at 800 m than 600 m), suggesting that stationary receivers were affected by

processes that were not observed. During 2018-1, estimated range was similar between stationary

and mobile receivers at distances up to 200 m but differed at larger distances due to mobile

detection range declining much faster than stationary detection range. The greatest difference

between stationary and mobile detection range was observed during 2018-2 when the robot was

moving away from the transmitter. During that run, mobile detection range was markedly lower,

even at 50 m—the closest distance between receiver and transmitter during that run.

The GAMmodel explained 50% of the null deviance. Detection efficiency differed by direction

of travel (Table 3.2) with more than a 5-fold increase in the log-odds of detection when moving

toward the transmitter than away from the transmitter. Significance of distance-based smoothers

suggested that variation in the shape of range curves was attributed to direction of movement and

other run-specific variables not included in the model. Pitch was significant when the robot was

moving toward the transmitter, but not when the robot was moving away from the transmitter

(Fig. 3.9A, 3.9C). Depth was significant when the robot was moving away from the transmitter but

not when the robot was moving toward the transmitter (Fig. 3.9B, 3.9D). Over the ranges of depth

and pitch observed, the effect of depth on detection efficiency moving away from the transmitter

was greater than the affect of pitch moving toward the transmitter (Fig. 3.10).

3.3 Discussion

Understanding detection performance of telemetry receivers can be critical for designing and

conducting a successful animal tracking project [5]. Although it is sometimes possible to derive an

animal location from detection time differences among multiple hydrophones [22], the location of a

receiver at the time of detection is often used to represent the location of a tagged animal at time of

detection for “presence-absence”-type data. Detection range data is useful for interpreting spatial
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Figure 3.8: Estimated efficiencies (proportion of coded signals detected) of detecting an
acoustic transmitter on acoustic receivers affixed to stationary moorings (red symbols; red
shaded regions are GAM-based 95% confidence regions) and gliding robotic fish Grace 2
(black line; grey shaded regions are GAM-based 95% confidence regions) in Higgins Lake,
Michigan during field tests in 2016 (panel A), 2017 (panel B), and 2018 (panels C-E). Vertical
grey bars show distances between robot and the transmitter when each coded signal was
detected (1) or not detected (0).

40



Figure 3.9: Partial effects of robot depth and pitch on detection probability. Estimated partial
effects of robot depth and pitch on the log odds of detection probability when the robot is
moving away from (panels A, B) or toward (panels C, D) a stationary transmitter in Higgins
Lake, Michigan.
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Figure 3.10: Estimated efficiencies (proportion of coded bursts detected) of detecting an
acoustic transmitter on acoustic receivers affixed to gliding robotic fish Grace 2 in Higgins
Lake, Michigan, during field tests in which evidence (GAM model results) suggested that
detection range was influenced most by depth when the robot was moving away from the
transmitter (panel C) and pitch when the robot was moving toward the transmitter (panel A,
B, D).
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ambiguity or uncertainty around detection locations but is not commonly collected [38]. Moreover,

receivers are often assumed omnidirectional, though several processes contributing to directional or

non-uniform detection areas have been described [39]. In our study, decreased detection efficiency

when the robot was moving away from the transmitter was not unexpected due to potential shielding

of the signal based on position and orientation of the receiver on the robot (attached to the bottom

with the hydrophone facing forward) and the importance of line-of-site to acoustic detection. The

magnitude of the effect, however, has important implications for the ability of an AUV in this

configuration to detect tagged fish and for inferences of fish locations based on detection data.

Depth and pitch are critical control parameters of AUVs that are carefully programmed to ensure

mission success in the face of environmental and energetic constraints. When the objective is to

detect acoustic-tagged fish, operational adjustments may be needed to achieve favorable balance

among detection efficiency and other operational processes (e.g., navigation, communication). Our

results suggest that both depth and pitch can influence detection efficiency, even under a narrow

scope of environmental conditions. Vertical gradients of environmental variables known to affect

acoustic signals in water (e.g., salinity, temperature, suspended particulates, entrained air) exist in

most aquatic systems but we were not aware of any such gradients during this study. Although lack

of environmental heterogeneity may limit application of these results to other systems, it may have

improved our ability to detect relatively small effects by minimizing background variability during

our study. Moreover, the potential silver lining of observed variability that is not environmentally-

driven is that it may be related to variables that can be controlled or modified.

We hypothesize that decreasing detection efficiency from the surface to 4 m depth when moving

away from the transmitter was driven by shielding of the signal by the body of the robot at depth.

As described above, this seems reasonable based on position and orientation of the receiver on the

robot. If true, then the depth variable used in our analysis may be a proxy for the difference in

depth between the hydrophone and the transmitter. Although the range in depth difference between

receiver and transmitter in our tests (receiver ranged 0 to 4 m above the tag) may be representative

of some shallow environments, potential clearly exists for much greater vertical separation in many
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aquatic systems. For an AUV with bottom-mounted receiver, shielding effects are expected to be

largest when the vehicle is deeper than a tagged fish and smallest when the vehicle is shallower

than the tagged fish. Thus, effects of shielding may be minimized by operational parameters (e.g.,

depth range) based on knowledge of the ecology of the target organisms (i.e., remaining near the

surface for pelagic fish) or structural changes to the vehicle (i.e., positioning the receiver on top of

the AUV for surface-oriented fish).

Although the mobile receiver on the gliding robotic fish did not perform as well as stationary

receivers throughout the entire range tested, detection performance over shorter distances (300 m

or less) are likely still adequate for many active tracking needs. In practice, acoustic transmitter

detection ranges vary considerably by hardware and software differences and environmental con-

ditions. Future work may seek to determine if differences between the robot-mounted receiver

and stationary receivers are due to characteristics of the robot (e.g., electrical or mechanical noise)

or interaction of the robot with the environment (e.g., turbulence of flow over the hydrophone).

Regardless of future improvements, however, knowledge of the robot-mounted detection ranges

will be useful for planning future missions, including active tracking with a network of AUVs.

Although these results add to our knowledge of AUV performance, much variation in detection

efficiency remained unexplained in our analysis. Unfortunately, we were not able to account for

the influence of the environmental variables (e.g. wind, water temperature, ambient noise) on

the results because availability of those data were limited. However, we are still able to use

those observations to generate hypotheses from our descriptive analyses. Our observational data

set did not have sufficient replication (multiple runs) over environmental variables (e.g., wind,

ambient noise, thermal stratification). Future work should seek to obtain a balanced study design

with replicate runs over a range of environment variables, so that one can attribute variation in

the detection range to those variables. Obtaining environmental measurements at appropriate

resolution and scale is also important, and these measurements likely need to be recorded locally

and frequently to be relevant to tag transmissions that occur every minute or less.
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3.4 Summary and Future Work

AUVs are becoming important tools for understanding the relationships between aquatic organ-

isms and their environment. We present results on the applicability of Grace 2 to acoustic telemetry

of tagged fish in fresh and shallow water.

A forward-facing acoustic receiver (VR2Tx) was attached to Grace 2 in order to compare its

detection efficiency of acoustic tags (VEMCO model V8-4H) to stationary receivers. Initial tests

indicate that the detection efficiency for the mobile and fixed receivers are close up to 600 m, with

good detection efficiency at a distance of 300 m (78% for stationary receivers compared to 76%

for the mobile receiver). However, the detection efficiency for the mobile receiver drops faster

than that of the stationary receivers at greater distances. Lowest detection efficiency is observed

when the mobile receiver is facing away from the tag, indicating that alignment between the tag

and the receiver’s detection cone is important. This can help guide the development of tag tracking

controllers and future robot prototypes tominimize shielding of themobile receiver. As an example,

tag-tracking controllers should consider the directionality of the receiver, as well as the relative

position of the tag with respect to the receiver. Other options to mitigate this effect include the

use of vertically mounted receivers, pointing upwards or downwards [14, 10], using two receivers

mounted back to back, or mounting the receiver on an active bracket that can rotate freely to better

align the receiver towards the transmitters.

On the other hand, there are some questions that need to be addressed to further characterize

the robot’s applicability to active tracking of acoustic signals, and acoustic telemetry in general,

such as capability of overcoming currents, battery life, and maximum depth rating. Understanding

these parameters is important to comparing such prototypes to commercially available tools, and

future work will compare using these robots to that of other vehicles. Future work should also

focus on conducting more replicate runs over a range of environmental variables (e.g., wind, noise,

stratification), and testing real-time control algorithm for active tracking of acoustic tags.
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CHAPTER 4

TIME-DIFFERENCE-OF-ARRIVAL (TDOA)-BASED DISTRIBUTED TARGET
LOCALIZATION BY A ROBOTIC NETWORK

Motivated by the application of tracking tagged fish by a network of gliding robotic fish, we present

theoretical treatment for the localization and tracking of a moving target. Much of the work on

TDOA-based localization in the literature adopts a centralized approach, in which a reference node

is chosen and the times of arrival (TOA) of the emitted signal for all other nodes in the network

are subtracted from the reference node’s TOA, generating TDOA measurements at fusion hub. If

the propagation speed of the signal is known, the TDOA measurements can be converted to range-

difference measurements, which are then used to estimate the location of the target [40, 41]. This

centralized approach has a long history and is widely used in aerospace systems [42]. Geometric

treatment of the problem for a stationary target was considered in [43] and [44], where the target

location is inferred from the geometric relations imposed by the TDOA measurements. When

the target’s location changes with time, dynamic approaches are generally used for localization, in

which a filter is used to estimate the target’s location. Examples of these methods include utilizing

an Extended Kalman Filter (EKF) in [45], or an Unscented Kalman Filter and Particle Filters in

[46].

Due to power and bandwidth constraints in robotic networks, centralized information processing

is often infeasible, particularly for a large-scale and unreliable networks. Moreover, some sensors

cannot transmit theirmeasurements to the reference node due to their limited communication ranges.

These drawbacks motivated the investigation of distributed strategies for TDOA-based localization.

In [47], decentralized source localization in multihop networks was considered, where a connected

dominating set of nodes work as the network backbone to collect the measurements, and a leader

node of that set is selected to estimate the target’s location, essentially acting as a centralized

estimator of the target’s position. The need for a common reference node is alleviated in [48],

where a network of paired sensors is utilized while requiring all such pairs to be able communicate
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with one another. As we discuss later in Section 4.2, this decentralized approach can be improved

upon by exchanging estimate information between nodes, allowing for successful estimationwithout

requiring all agents in the network to be connected.

In Appendix A, we show the boundedness of the estimation error using the stochastic stability

lemma [49, 50]. However, the conditions developed there are difficult to verify. Namely, finding

positive definite matrices which satisfy Lemma A.2.1 are difficult to compute. Moreover, it is not

clear how suchmatrices relate to the underlying communication graph among agents for exchanging

information. For those reasons, structural observability is used in this chapter to investigate the

network topology conditions for distributed localization of a moving target. It is shown that source

localization is not possible (centrally, and therefore distributively) when the total number of TDOA

measurement is insufficient. Then, we demonstrate that the target’s position can be successfully

estimated in a distributed manner if and only if every agent is part of a connected network that

collectively has a sufficient number of TDOA measurements, even if each agent has an insufficient

number of measurements.

Structural analysis deals with system properties that do not depend on the numerical values of

the parameters, but only on the underlying structure (zeros and non-zeros) of the system matrices

[51, 52, 53]. It turns out that if a structural property holds for one possible choice of non-zero

elements as free parameters, it is true for almost all choices of non-zero elements and, therefore,

is called a generic property of the system. Furthermore, it can be shown that those particular

(non-admissible) choices for which the generic property does not hold, lie on some algebraic

variety with zero Lebesgue measure [54]. While this work is similar to [52] and [55] in that it

employs structural analysis on the system matrices, there is a significant difference. In particular,

the results reported in [52] and [55] treat all non-zero elements as free parameters, which in turn

disguises the importance of the number of TDOA measurements used in this localization scheme.

In Section 4.2, we explicitly consider the role played by using more TDOA measurements, and

prove that the system can be rendered generically observable when a sufficient number of TDOA

measurements are used.
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The work presented here introduces a fully distributed solution to target localization under fixed

and time-varying undirected communication topologies. This approach does not require a common

reference node or data fusion center, nor does it require each agent to be heavily connected to

estimate the target’s location on its own. Instead, we show that every agent in the network can

successfully localize the target if it is part of a network that has a minimum of 4 connected, non-

coplanar agents. As the target moves away from the convex hull formed by the agents, estimation

performance begins to degrade and it becomes paramount to track the target as it moves through

space. Rather than continuously tracking the target, we further propose an adaptive movement

strategy, where the robotic network moves only when the norm of the estimation covariance matrix

exceeds a certain limit, to balance the trade-off between estimation performance and distance

traveled by the entire mobile network.

4.1 Problem Setup

We consider a moving target in the 3D space with ?(C) =
[
?G (C) ?H (C) ?I (C)

]′
denoting its

coordinates at time C. The target moves randomly in space according to
¤?(C)

¥?(C)

 =

0 �3

0 0



?(C)

¤?(C)

 +


0

�3

 F(C), (4.1)

where �3 is the 3 × 3 identity matrix and F(C) ∈ R3 is the process noise, which is assumed to be

zero-mean, white Gaussian noise with covariance matrix &.

The target emits a signal periodically that gets detected by a group of # robotic agents, or nodes,

at different times depending on each agent’s relative distance to the target. At each detection, agent

8 records the signal’s TOA and acquires the TOAs of all other agents that can communicate their

information to agent 8. These agents form the set of neighbors of agent 8, which is denoted as

N8. Each agent then subtracts the TOAs of its neighbors from its own TOA, generating a list of

time-difference-of-arrival (TDOA) measurements. Assuming that the propagation speed of the

signal is known, the measurements available for each agent are given by

H8 (:)) = ℎ8 (:)) + E8 (:)), (4.2)
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where

ℎ8 (C) =


ℎ8,1(C)
...

ℎ8,|N8 | (C)


, (4.3)

with

ℎ8, 9 (C) = ‖?(C) − ?8 (C)‖ − ‖?(C) − ?8, 9 (C)‖. (4.4)

Here,) is the period at which the signal is emitted, E8 (C) ∈ R|N8 | is the measurement noise, assumed

to be zero-mean, white Gaussian noise with covariance matrix '8, ?8 (C) is the position of agent 8,

and ?8, 9 (C) is the position of the 9-th neighbor of agent 8.

Denoting the target’s state as G(C) =
[
?′(C) ¤?′(C)

]′
, and discretizing the model in (4.1) with

sampling time ) , with slight abuse of notation, we can write the discrete-time model of the target

as

G(: + 1) = �G(:) + �F(:), (4.5)

where

� =



1 0 0 ) 0 0

0 1 0 0 ) 0

0 0 1 0 0 )

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1



, � =



)2
2 0 0

0 )2
2 0

0 0 )2
2

) 0 0

0 ) 0

0 0 )



. (4.6)

The time-varying measurement matrix �8 (:) can be obtained from (4.2), where

�8 (:) =


mℎ8,1 (:)
m?G (:)

mℎ8,1 (:)
m?H (:)

mℎ8,1 (:)
m?I (:) 0 0 0

...
...

...
...
...
...

mℎ8,|N8 | (:)
m?G (:)

mℎ8,|N8 | (:)
m?H (:)

mℎ8,|N8 | (:)
m?I (:) 0 0 0


, (4.7)
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and

mℎ8, 9 (:)
m?G (:) =

?G (:) − ?G
8
(:)

‖?(:) − ?8 (:)‖
−
?G (:) − ?G

8, 9
(:)

‖?(:) − ?8, 9 (:)‖
, (4.8)

mℎ8, 9 (:)
m?H (:) =

?H (:) − ?H
8
(:)

‖?(:) − ?8 (:)‖
−
?H (:) − ?H

8, 9
(:)

‖?(:) − ?8, 9 (:)‖
, (4.9)

mℎ8, 9 (:)
m?I (:) =

?I (:) − ?I
8
(:)

‖?(:) − ?8 (:)‖
−
?I (:) − ?I

8, 9
(:)

‖?(:) − ?8, 9 (:)‖
. (4.10)

4.2 Distributed Estimation

In this section, we look into the problem of distributed localization of a moving target using

TDOAmeasurements. The goal is for every agent to estimate the target’s position without requiring

a central node to collect all measurements and propagate an estimate to all agents in the network. To

that end, we first discuss a decentralized estimation scheme, where structural observability analysis

is conducted to derive the minimum number of TDOA measurements required for an agent to

estimate the target state on its own. We will then discuss the distributed estimation scheme where

agents exchange estimate information, and present the necessary and sufficient condition in terms

of network topology for achieving stable estimates.

4.2.1 Decentralized Estimation

In this approach, each agent runs its own filter using its own TDOA measurements. Here, agents

exchange only their locations and TOA values to generate TDOAmeasurements without exchanging

any other pieces of information. Each node implements an extendedKalman filter (EKF) to estimate

the target’s state

Ĝ8 (: |: − 1) = �Ĝ8 (: − 1|: − 1), (4.11)

Ĝ8 (: |:) = Ĝ8 (: |: − 1)

+ 8 (:)
[
H8 (:) − ℎ8 (Ĝ8 (: |: − 1))

]
, (4.12)
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where Ĝ8 (: | 9) is the 8-th node’s estimate of the state at time : after the 9-th measurement has been

processed, and  8 (:) is its filtering gain, which is computed according to

 8 (:) = %8 (: |: − 1)�8 (:)′

×
[
�8 (:)%8 (: |: − 1)�8 (:)′ + '8

]−1
, (4.13)

and

%8 (: |: − 1) = �%8 (: − 1|: − 1)�′ + �&�′, (4.14)

%8 (: |:) =
[
� −  8 (:)�8 (:)

]
%8 (: |: − 1)

[
� −  8 (:)�8 (:)

]′
+ 8 (:)'8 8 (:)′, (4.15)

where %8 (: | 9) is the 8-th agent’s error covariance matrix at time : after the 9-th measurement has

been processed.

It is well-known (see [56] and [57]) that the estimation error for agent 8 under this scheme,

which propagates as follows,

G̃8 (: + 1) = �(� −  8 (:)�8 (:))G̃8 (:) + [8 (:), (4.16)

is stable if and only if the pair (�, �8 (:)) is observable, where G̃8 (:) , G(:) − Ĝ8 (: |:) is the

estimation error for agent 8 and the vector [8 (:) collects the terms independent of G̃8 (:). In the

following, we will show that the pair (�, �8 (:)) is unobservable when agent 8 has less than 3

TDOA measurements. To avoid clutter, we will consider only agent 1 of the network, and drop the

8 subscript from the following analysis.

As discussed earlier, if a structural property is true for one admissible choice of non-zero

elements, it is true for almost all choices of non-zero elements. Additionally, it can be shown

that the choices of parameters for which the generic property does not hold, lie on a hypersurface

(see Definition 4.2.1) in the free parameter space with zero Lebesgue measure [54]. Due to the

fixed structure of our system matrix � in (4.6) and the time-varying measurement matrix � (:)

in (4.7), it is beneficial to utilize structural analysis when examining the observability of our

system. In the following, we employ a structural approach to establish the minimum number of

TDOA measurements needed to render the process generically observable.
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Figure 4.1: Network of 3 agents monitoring the target with agent 1 as the reference node.

Figure 4.2: Network of 4 agents monitoring the target with agent 1 as the reference node.

Definition 4.2.1 Let 5 = 5 (G1, . . . , G=) be a polynomial in the = variables G1, . . . , G= with coeffi-

cients in R. Then the point Ḡ = (Ḡ1, . . . , Ḡ=) in R= is called a zero of 5 if 5 (Ḡ1, . . . , Ḡ=) = 0. The

set of zeros of 5 is called the locus of 5 . A subset + of R= is called a hypersurface in R= if it is the

locus of a nonconstant polynomial.

First, we consider the case where agent 1 only has two neighbors and, therefore, only two TDOA

measurements as shown in Figure 4.1. The measurement matrix � (:), in this case, admits the

following structure

�_ =


_1 _2 _3 0 0 0

_4 _5 _6 0 0 0

 . (4.17)

The system is said to be generically observable if the pair (�, �_) is observable for almost

all values of ), _1, . . . , _6. In other words, the system is generically observable if and only if the

observability matrix O is full rank for almost all values of ), _1, . . . , _6, where

O =
[
�′
_
(�_�)′ (�_�2)′ · · · (�_�5)′

]′
. (4.18)

It is well known that rank(O) < 6 if and only if all 6 × 6 minors of O are zero [54]. We can

easily verify that all 6 × 6 minors of O in (4.18) are zero, regardless of the values of ), _1, . . . , _6.

This implies that the process in (4.5) with measurement matrix (4.7) is unobservable when the node

has two or less TDOA measurements1.
1If the node has only one TDOA measurement, and therefore only one neighbor, then there is

only one 6 × 6 minor of O and it is det(O).
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Now we consider the case where agent 1 has three neighbors and, therefore, three TDOA

measurements as shown in Figure 4.2. The measurement matrix � (:), in this case, admits the

following structure

�_ =


_1 _2 _3 0 0 0

_4 _5 _6 0 0 0

_7 _8 _9 0 0 0


. (4.19)

Checking all 6 × 6 minors of O, we observe that some minors of O are not identically zero and

are all of the form

U)3(_3 (_5_7 − _4_8) + _2 (_4_9 − _6_7)

+_1 (_6_8 − _5_9))2,
(4.20)

for some U ∈ R. Therefore, we conclude that rank(O) = 6 for almost all values of) and _1, . . . , _9,

and that the pair (�, � (:)) is generically observable if the agent has a minimum of 3 TDOA

measurements2. Furthermore, the set of values that render the pair unobservable is a hypersurface

in the free parameter space where the expression in (4.20) is zero. Interestingly, this means that the

process is generically observable except when:

• The sampling time used for discretization of the system in (4.5) is 0, or

• All of the points that satisfy

det

©­­­­­«

_1 _2 _3

_4 _5 _6

_7 _8 _9


ª®®®®®¬
= 0,

i.e., when the 3 TDOA measurements are linearly dependent, and the 4 agents are coplanar.

For all agents in the network to be able to estimate the target’s position under this decentralized

scheme, we would require that all such pairs (�, �1(:)),(�, �2(:)),. . . ,(�, �# (:)) to be observ-

able, i.e., we would require the pair (�# ⊗ �, ��) to be observable, where ⊗ denotes the Kronecker

2If the node has more than 3 TDOA measurements, it can be verified that rank(O) = 6 if
rank(�_) ≥ 3.
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product, and

�� (:) ,


�1(:) 0

. . .

0 �# (:)


. (4.21)

Let Ĝ(: |:) =
[
Ĝ1(: |:)′ . . . Ĝ# (: |:)′

]′
denote the network-wide estimate of the network-

wide state G(:) =
[
G(:)′ . . . G(:)′

]′
= 1# ⊗ G(:), where 1# ∈ R# is the column vector whose

entries are all 1. The dynamics of this network-wide state can be derived as follows

G(: + 1) =1# ⊗ (�G(:) + �F(:))

= (�# ⊗ �) (1# ⊗ G(:))

+ (�# ⊗ �) (1# ⊗ F(:))

= (�# ⊗ �) G(:) + (�# ⊗ �)F(:), (4.22)

with F(:) , 1# ⊗ F(:) representing the network-wide process noise. Denoting the 8-th agent’s

estimation error by G̃8 (:) , G(:) − Ĝ8 (: |:), and the network-wide estimation error G̃(:) ,[
G̃1(:)′ . . . G̃# (:)′

]′
, the dynamics of G̃(:) are given by

G̃(: + 1) = (�# ⊗ �) (�6# −  (:)�� (:)) G̃(:)

+ [(:),
(4.23)

where  (:) is a block-diagonal matrix of the filter gains  1(:) . . .  # (:), and the vector [(:)

collects the terms independent of G̃(:). This network-wide estimation error can be stabilized if

the pair (�# ⊗ �, �� (:)) is generically observable, where each agent needs to have a sufficient

number of neighbors to estimate the process using only its own TDOA measurements.

Under this formulation, each agent can estimate the target’s location when it has a minimum

of 3 TDOA measurements, corresponding to each agent having a minimum of 3 neighbors. This

decentralized approach requires each agent to be heavily connected such that the target system is

observable using each agent’s own measurements. Next, we discuss how the number of required

communication links can be reduced, and argue that it is possible to estimate the target’s location

without the need for heavily connecting the agents.

54



4.2.2 Distributed Estimation

Consider the dynamical system in (4.22), and noting that for a stochastic matrix , ∈ R#×# ,

,1# = 1# , we can rewrite (4.22) as

G(: + 1) =1# ⊗ (�G(:) + �F(:))

=,1# ⊗ �G(:) + 1# ⊗ �F(:)

= (, ⊗ �) G(:) + (�# ⊗ �)F(:). (4.24)

For thismodified dynamical system in (4.24), a centralized filter can be designedwith estimation

error dynamics that can be expressed as

G̃(: + 1) = (, ⊗ �) (�6# −  2 (:)�� (:)) G̃(:)

+ [(:),
(4.25)

where  2 (:) is the filter gain, which can stabilize the error dynamics if the pair (, ⊗ �, �� (:)) is

generically observable. In the following, we will show that it is possible to obtain a network-wide

estimation error with dynamics similar to (4.25) by averaging the estimates among neighboring

agents.

Let , ∈ R#×# be a stochastic matrix with entries F8 9 > 0 if 8 = 9 or if agents 8 and 9 can

exchange information; otherwise F8 9 = 0. We assume here that every agent has access to its own

information (i.e., F88 > 0), and that the communication links are bidirectional, namely, if agent 9

can send its information to agent 8, then the reverse is also true, F8 9 , F 98 > 0. Every agent in the

network implements a filtering scheme similar to the decentralized case, but followed by updating

its estimate by averaging the estimates from neighbors and itself. The filter implemented by each

agent in the network is then given by
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Ĝ8 (: |: − 1) = �Ḡ8 (: − 1), (4.26)

Ĝ8 (: |:) = Ĝ8 (: |: − 1)

+ 8 (:)
[
H8 (:) − ℎ8 (Ĝ8 (: |: − 1))

]
, (4.27)

Ḡ8 (:) =

#∑
9=1

F8 9 Ĝ 9 (: |:). (4.28)

Denoting Ĝ8 (: |: − 1) by Ĝ8 (:), and substituting (4.27) and (4.28) into (4.26), we can express a

one-step formulation of agent 8’s estimate can as

Ĝ8 (: + 1) =
#∑
9=1

F8 9

[
�Ĝ 9 (:)+

� 9 (:)
(
H 9 (:) − ℎ 9 (Ĝ 9 (:))

)]
.

(4.29)

The 8-th agent’s estimation error is then given by

G̃8 (: + 1) =
#∑
9=1

F8 9
[
�(� −  9 (:)� 9 (:))G̃ 9 (:)

+ [ 9 (:)
]
.

(4.30)

Denoting the network-wide estimation error by G̃(:) ,
[
G̃1(:)′ . . . G̃# (:)′

]′
, then

G̃(: + 1) = (, ⊗ �) (�6# −  (:)�� (:)) G̃(:)

+ [(:),
(4.31)

which is similar to (4.25), except that here the gain matrix  (:) is restricted to be block-

diagonal. As explained in [52], computing such a constrained gain is possible via an iterative

cone-complementary optimization algorithm; see [58] and [59] for details. In [60], the authors

derived a suboptimal filtering gain inspired by the Markovian jump linear system filtering problem,

where

 8 (:) =%8 (: |: − 1)�8 (:)′

×
[
�8 (:)%8 (: |: − 1)�8 (:)′ + '8

]−1
,

(4.32)
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and

%8 (: |: − 1) = �%̄8 (: − 1)�′ + �&�′, (4.33)

%8 (: |:) =
[
�6 −  8 (:)�8 (:)

]
%8 (: |: − 1)

×
[
�6 −  8 (:)�8 (:)

]′
+ 8 (:)'8 8 (:)′, (4.34)

%̄8 (:) =

#∑
9=1

F8 9% 9 (: |:). (4.35)

Therefore, to ensure the convergence of the networked filter, one has to ensure that the networked

system is observable [52]. To that end, we investigate the conditions on the matrix, and, therefore,

the topology of the undirected communication graph among agents, that would render the pair

(, ⊗ �, ��) observable, and therefore ensure the convergence of the networked filter. We first

note the following property regarding the powers of the matrix, from [61].

Lemma 4.2.2 Let [, ;]8 9 denote the (8, 9) element of the matrix , ; , where , is the stochastic

matrix representing the communication topology with F88 > 0. Then, [, ;]8 9 > 0 if there is a path

between agents 8 and 9 of length less than or equal to ;; otherwise [, ;]8 9 = 0.

The pair (, ⊗ �, ��) is observable if and only if rank(O) = 6# . Here,

O =



�� (:)

�� (:) (, ⊗ �)

�� (:) (, ⊗ �)2
...

�� (:) (, ⊗ �)?


=



�� (:)

�� (:) (, ⊗ �)

�� (:) (,2 ⊗ �2)
...

�� (:) (, ? ⊗ �?),


(4.36)

where ? = 6# −1. Equivalently, denoting O8 as the block column representing agent 8’s subsystem,

we can write O =
[
O1 . . . O#

]
. From the structure of �� , it is easy to see that rank(O) =∑#

8=1 rank(O8).

We are now ready to present the main results in this chapter.
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Theorem 4.2.3 For a network of agents with time-invariant and undirected topology, the system

under the proposed distributed TDOA-based localization is observable if and only if every agent is

part of a (sub)network that has at least 4 connected, non-coplanar agents.

Proof: Sufficiency: We consider the case where agent 8 is part of a network that has only 4

connected agents, and note that the following results can be easily extended to the cases where the

network has more agents. Since it is always possible to renumber the agents, we will only consider

the subsystem corresponding to agent 1, and write

O1 =


�1(:)
...[

,23]
41 �4(:)�23


. (4.37)

This agent can be connected to the network in 4 possible ways that are shown in Fig. 4.33.

For the ease of presentation, in the following, we examine Case (d), where the agent has only one

neighbor, and show that rank(O1) = 6. The other three cases are discussed in Appendix B.1.

Case (d)

The structure of �8 (:) for 8 = 1, . . . , 4 is as

�1(_) =
[
_1 _2 _3 0 0 0

]
,

�2(_) =

−_1 −_2 −_3 0 0 0

_4 _5 _6 0 0 0

 ,
�3(_) =


−_4 −_5 −_6 0 0 0

_7 _8 _9 0 0 0

 ,
�4(_) =

[
−_7 −_8 −_9 0 0 0

]
.

3The graphs shown in Fig. 4.3 represent the minimum number of links required for each graph
to be connected. It is possible to add more edges among agents in these graphs and adding more
links will only help in terms of observability.
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Figure 4.3: The 4 possible configurations for node 1 to be connected to the network using the
minimum number of edges.

Recalling that

rank

©­­­­­«


�

...

��=−1


ª®®®®®¬
= rank

©­­­­­«

��:

...

��:+=−1


ª®®®®®¬
,

it can be shown that the pair

©­­­­­«
�,


�1(_)

�3(_)

�4(_)


ª®®®®®¬

is generically observable, implying that

rank

©­­­­­­­­­­­­­­­­­­«



�1(_)

�3(_)

�4(_)
...

�1(_)�6

�3(_)�6

�4(_)�6



ª®®®®®®®®®®®®®®®®®®¬

= 6.
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for almost all values of ) and _. Additionally, rank(O1) = 6 for almost all values of ) and _.

Specifically, this generic property holds for all values of ) and _, except for when the 4 agents are

coplanar. Since it is always possible to renumber the agents, then if every agent is connected to the

network that has a minimum of 4 connected, non-coplanar agents, then the pair (, ⊗ �, �� (:)) is

generically observable. The proof for the other cases follows a similar approach, and is presented

in Appendix B.1.

Necessity: If an agent is disconnected, or is part of a network that has less than 4 agents,

then there are not enough pieces of information to estimate the target’s position centrally, let alone

distributively, and the error dynamics in (4.25) – and therefore (4.31) – cannot be stabilized. �

For a time-varying, undirected communication graph, Theorem 4.2.3 can be extended to offer

a scalable approach that is somewhat robust to communication link dropout.

Corollary 4.2.4 For a time-varying undirected network, if every agent remains part of a network

that has a minimum of 4 connected, non-coplanar agents then the networked system under the

proposed distributed estimation scheme is observable.

Proof: As the network connectivity changes, if every agent remains part of a network that has

a minimum of 4 connected, non-coplanar agents, then it can be shown that rank(O8) = 6 for

every agent in the network. This, in turn, ensures that the networked system is observable by

Theorem 4.2.3. �

4.3 Target Tracking with Coordinated Robotic Network Movement

In this section we look into the second part of the problem. We begin the discussion by

investigating the agent formation needed for optimum localization of the target.

4.3.1 Optimal Formation

For a network of # agents, there is a total number of # (# − 1)/2 possible agent pairs. Let

I0 = {(8, 9) |1 ≤ 9 < 8 ≤ #} denote the set of all agent pairs and I = {(8, 9) | 9 < 8, F8 9 > 0}, a
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subset of I0, represent the set of agent pairs used for estimation. From the definition of F8 9 , it is

clear that I depends on the communication topology among agents.

The Cramer-Rao bound (CRB) is a lower bound for the covariancematrix of unbiased estimators

and is given by the inverse of the Fisher information matrix [62]. With H ,
[
H′1 . . . H′

#

]
, the

Fisher information matrix is given by

� = �

[(
m

m?
ln 5 (H |?)

) (
m

m?
ln 5 (H |?)

)′]
, (4.38)

where 5 (H |?) is the probability density function (PDF) of H given ? and � [·] denotes the expectation

on H. Note that the measurement noise E8 is assumed to be Gaussian with zero mean. Assuming

that '8 = f2
E �|N8 |, one arrives at a 3 × 3 Fisher information matrix by Chan and Ho4 [63]

� =
1
f2
E

��′, (4.39)

where

� =

[
68 9 . . .

]
(8, 9)∈I

, (4.40)

68 9 = 68 − 6 9 , (4.41)

68 =
? − ?8
‖? − ?8 ‖

. (4.42)

Clearly, 68 is a unit-length vector pointing from agent 8 to the target, and the matrix � depends on

the target position, agents’ positions, and the set I of agent pairs used for localization.

Since the CRB is a square matrix, we seek a formation of agents that minimizes of the trace of

the CRB,

tr(�−1) = f2
E tr

(
[��′]−1

)
, (4.43)

which is a lower bound for the sum of variances of unbiased estimators for all elements of the

target’s position ?. In order to obtain the lowest possible CRB, and therefore a better performance

by the estimator, all agent pairs in the network need to be considered, and I = I0, requiring a

fully-connected network. The necessary and sufficient conditions to achieve a minimum CRB are

4Here, the propapagation speed of the transmitted signal is normalized to one.
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presented in [62]. It is known that the optimum 2D formation is that of a uniform angular array

where all agents are equally distributed around a circle of radius ', for some arbitrary ' > 0,

centered around the target [62]. Similarly, in the 3D case, the optimal configurations for a complete

network are the 3D equivalent of uniform angular arrays, known as the Platonic solids.

Remark 4.3.1 The biggest drawback in achieving optimal estimation is that it requires the complete

connectivity of the corresponding agent network. This requirement can be relaxed if one is interested

in sub-optimal performance. We note that since the performance depends on the shape of the

formation, one can search the shape space of the agent formation space to arrive at topology-

specific shapes that minimize (at least locally), the associated CRB. In this work, we specify the

formation to be that of a Platonic solid, even when the network is not completely connected.

The goal of tracking the moving target by the network is to ensure adequate localization using

the distributed estimator. However, it is not necessary to continuously move the robots with the

target. In order to balance the trade-off between the cumulative distance traveled and the estimation

performance, each agent can utilize the norm of the error covariance matrix, ‖%8 ‖, and only apply

the tracking control if the ‖%8 ‖ > 1 for some constant 1 > 0. Note that 1 is a design parameter

a user can set depending on the specific problem. In particular, this parameter allows the user

to mediate between two extreme cases, 1) minimizing energy and remaining stationary (1 = ∞),

and (2) maximizing estimation performance by continuously tracking the moving target (1 = 0).

While this switching control strategy is not guaranteed to drive each agent to its corresponding

desired location, it can greatly reduce the total distance traveled by all agents, as is illustrated in the

following section.

In order to guarantee that all agents move together, or keep still at the same time, we exploit

the average-based consensus scheme in (4.28) and (4.35) between TDOA measurements. Namely,

every g << ) seconds, each robotic agent 8 in the network communicates and averages its estimate

and covariance matrix with its neighborsN8. This ensures that all agents agree on their covariance
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matrices and coordinate their movements5.

4.4 Simulation Results

In this work, we use each robot’s estimate of the target’s state to arrive at the desired position of

each robot. To facilitate the simulation, we consider a simplified model of a propelled underwater

vehicle with steering control in yaw and pitch. The model used for each agent in the network is

given by: 

¤?G
8

¤?H
8

¤?I
8

¤E8
¤q8

¤W8

¤l8,q

¤l8,W



=



E8 cos (q8) cos (W8)

E8 sin (q8) cos (W8)

E8 sin (W8)

08

l8,q

l8,W

D8,2

D8,3



(4.44)

where ?8 =
[
?G
8

?
H

8
?I
8

]
denotes the position of agent 8 in the inertial frame, E8 represents the

agent’s linear velocity along its body-fixed G axis, which stretches from the robot center to the

front of the robot. The angle W8 is the angle between the inertial I axis and agent 8’s body-fixed G

axis, while q8 is the robot’s yaw angle measured as the angle between the inertial G axis and the

projection of the body-fixed G-axis onto the inertial G − H plane. The terms l8,q and l8,W are the

rates of change of the angles q8 and W8, while 08, D8,2, and D8,3 represent the control inputs for the

robot. Figure 4.4 illustrates the the robot position and relevant angle in the sagittal (G − I) plane.

The estimated position of the moving target is fed into a feedback linearization control strategy

to drive each agent to its desired position (see Appendix B.2 for details). The desired state for agent

5Exchanging information on a much quicker time scale is only needed to ensure that the agents
coordinate their movement, and is not a requirement for the distributed estimator.
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Figure 4.4: Illustration of the simplified model of a propelled underwater robot with steering
control, with a view on the sagittal plane. The robot has similar yaw control in the horizontal
plane.

8 can be obtained from its estimate of target’s state:

?★8 = ?̂8 + 38 (4.45)

E★8 = ‖ ¤̂?8 ‖ (4.46)

q★8 = tan−1
(
¤̂?H
8
¤̂?G
8

)
(4.47)

W★8 = sin−1
(
¤̂?I
8
‖ ¤̂?8 ‖

)
(4.48)

(4.49)

where 38 is a constant vector that defines the position of agent 8 relative to the target.
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Figure 4.5: The fixed communication topology among a network of 8 agents. It is clear
that no agent in the network has a sufficient number of neighbors (and therefore TDOA
measurements) to estimate the process on its own.

The proposed approach was simulated for a network of # = 8 agents with initial positions:

?1 =
[
−7 3 5

]′
?2 =

[
1 −2 −5

]′
?3 =

[
5 −1 4

]′
?4 =

[
7 4 −2

]′
?5 =

[
−5 2 −2

]′
?6 =

[
0 −6 7

]′
?7 =

[
7 −5 1

]′
?8 =

[
−1 2 −1

]′
as shown in Figure 4.6. The measurement noise covariance matrix for each agent was set to

'8 = �|N8 |. Estimators of each agentwere initializedwith Ĝ8 =
[
0 0 0 0 0 0

]′
and %8 = 100�6.

The initial position of the moving target was set to
[
17 −5 −15

]′
, with a process noise covariance

matrix & = 0.01�3. The emitted signal from the source was assumed to have a period of ) = 1 s,

while the average-based consensus was carried every g = 0.1 s. The desired formation for all agents

was set to that of a cube, i.e. a Platonic solid with 8 vertices, with a the radius of the underlying

sphere set to 10.

First we utilized the fixed communication topology shown in Fig. 4.5. Figs. 4.7a and 4.7b

show the final network configuration for the two extreme cases 1 = 0 and 1 = ∞, respectively.
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Figure 4.6: Initial setup for simulation environment with a fixed communication topology.
The big circle represents the moving target, while the small circles (overlapping one another
at the origin) represent the initial estimates of the target’s location for each robot. The
ellipsoids represent the mobile robots, while the thin lines connecting them represent the
communication links.

(a) (b)

Figure 4.7: Simulation results of the robots for the two extreme values of b under a fixed
communication topology where (a) the robots are constantly moving with target (b = 0), and
(b) the robots are staying put (b = ∞).

66



(a) b = 0 (b) b = 30

(c) b = 100 (d) b = ∞

Figure 4.8: Comparison of the Mean Squared Estimation Error (MSEE) of for each agent in
the network for different values of b under a fixed communication topology.

When 1 = 0, the network prioritizes minimizing the covariance norms over the total traveled

distance, causing the network to continuously track the moving target with its desired formation.

On the other hand, when 1 = ∞, the robots attempt to hold their positions to minimize the overall

traveled distance without any consideration to the covariance norms. Figs. 4.8 and 4.9 show the

estimation performance (estimation error and covariance in (4.31) and (4.35), respectively) for

different values of 1, while Fig. 4.10 depicts the corresponding cumulative distance traveled by all

agents in the network. From these figures, it can be seen that as 1 increases, the overall traveled

distance decreases while the covariance norms increase, causing the network to remain stationary

more often in exchange for less reliable estimation, as is also captured in Fig. 4.9.
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Figure 4.9: Comparison of average covariance norms for different b values under a fixed
communication topology.

Figure 4.10: Comparison of the collective distance traveled by the entire network for different
b values under a fixed communication topology.
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Figure 4.11: Initial setup for distance-based communication links.

Figure 4.12: Final setup for distance-based communication links.
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Figure 4.13: Mean Squared Estimation Error (MSEE) under a time-varying communication
graph with continuous tracking (b = 0) .

For the case of a time-varying communication network, we implemented a distance rule where a

communication link exists between any two agents if the distance between them is strictly less than

21. To ensure that no agent has a sufficient number of measurements to estimate the process on its

own, we deformed the desired tracking formation so that the distance between some agents would be

large enough. Figs. 4.11–4.12 show the initial and final setup, respectively, as the agents constantly

track the target position (i.e., 1 = 0). Initially the communication graph is fully connected as all

agents are close enough. As the distance between the robots increases, some of the communication

links are lost. Finally, it is clear from Fig. 4.13 that successful estimation is achieved even as the

communication graph changes and some of the communication links are dropped.

4.5 Summary and Future Work

We investigated the problem of distributed localization of a moving target by a network of

agents using TDOA measurements from first observability principles. Structural observability

principles were utilized to highlight the importance of having enough measurements to accurately

localize the moving target. We showed that a decentralized approach without exchanging estimates
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requires every agent in the network to be heavily connected to localize the target on its own. On the

other hand, under the distributed approach, we showed that when the agents exchange information

and fuse their estimates, then it is indeed possible for every agent in the network to estimate the

target’s position without needing to be heavily connected. Specifically, we showed that if every

agent is connected to a network with a minimum of 4 connected, non-coplanar agents, then the

process is rendered generically observable and each agent can accurately localize the target. This

work can be extended to time-varying communication topologies that are commonly encountered

when the communication links depend on the distances between the robots as they move. The

distributed filtering approach offers a degree of robustness to communication link dropouts, and

has been shown to perform well if the minimum connectivity condition holds. Furthermore,

we proposed a movement control strategy that aims to balance the trade-off between estimation

performance and total distance traveled by the network. A single parameter, 1, is specified to tune

the network performance between the two extreme cases of continuously tracking the target (best

estimation performance and high energy consumption), or remaining stationary (maximum energy

conservation at the expense of accurate localization). Through simulation, we notice a graceful

degradation in estimation performance for larger values of 1 in order to reduce energy expenditure.

This work can be expanded in several ways, including the analysis of directed communication

graphs. Additionally, different distributed control strategies can be introduced for formation control

and tracking of the target with obstacle and collision avoidance. Other interesting problems include

online-tuning of the parameter 1 to change the network objective and react to changes in the

environment (e.g., to reduce energy expenditure further when the robots are low on battery).

Future work should ultimately seek experimental validation of the proposed approach using mobile

acoustic receivers using Grace 2, similar to the setup presented in Chapter 3. Finally, future work

can consider stochastic models for the moving target, such as the correlated random walk model

[67], along with different filtering methodologies, such as the particle filtering [68].
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CHAPTER 5

NECESSARY CONDITIONS FOR THE CONVERGENCE OF THE DISTRIBUTED
KALMAN FILTER AND ITS COUPLED RICCATI EQUATIONS

The problem of distributed localization of amoving target in Chapter 4motivated the study of amore

general application of sensor networks: the distributed estimation problem. In many applications

involving large-scale complex systems, the state of the system is monitored by a group of sensors

spatially distributed over large networks where the communication between sensors is limited. To

model such a scenario, consider the discrete-time linear time-invariant (LTI) dynamical system

G(: + 1) = �G(:) + l(:) (5.1)

where : is the discrete-time index, � ∈ B(R=)1 is the system matrix, G(:) ∈ R= is the state vector,

and l(:) ∈ R= is a driving noise assumed to be Gaussian with zero mean and positive definite

covariance &. The state of the system is monitored by a network of # agents indexed by 8, each of

which is equipped with a sensor that receives a partial measurement of the state that is modeled by

H8 (:) = �8G(:) + E8 (:), 8 = 1, . . . , #, (5.2)

where H8 (:) ∈ R?8 is the measurement made by sensor 8 with �8 ∈ B(R=,R?8 ), and E8 ∈ R?8 is the

measurement noise assumed to be Gaussian with zero mean and positive definite covariance '8.

An important problem in such networks is to develop distributed algorithms for state estimation

of the process in (5.1), where the goal is for each agent to estimate the entire system state using

its respective local measurements and the information obtained from neighbors. While this model

does not directly capture the time-varying nature of the distributed localization problem, it allows

us to consider a wider range of system dynamics (stable, unstable, and marginally stable systems),

1For Banach spaces X and Y, we set B(X,Y) as the Banach spaces of all bounded linear
operators of X into Y, and use B(X) , B(X,X). We denote by R= the =-dimensional real
Euclidean spaces and B(R=,R<) the normed bounded linear space of < × = real matrices, with the
uniform induced-norm represented by ‖.‖, and use B(R=) , B(R=,R=).
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as well as a more general view into the relationship between system dynamics, agent measurement

models, and network requirements.

This distributed filtering problem has received significant attention over the past years, with

early studies considering two-time-scale algorithms with multiple data fusion iterations between

two consecutive time steps of the plant dynamics [24, 25]. Bandwidth and energy limitations

motivated the study of single-time-scale algorithms where the data fusion occurs once per time

step of plant dynamics. In [26, 27], the authors used state augmentation to cast the distributed

estimation problem as a problem for designing a decentralized stabilizing controller for an LTI

plant and provided conditions for successful estimation under their proposed approaches. In [28],

the authors alleviated the need for state augmentation and proposed a distributed filter where each

sensor performs consensus only on the portion of the state it cannot estimate on its own. In the

most general case, this would require the partitioning of the system dynamics into observable and

unobservable components and enforcing consensus on the unobservable modes at each sensor site.

In [29], the authors introduced the idea of consensus-based distributed linear filters (CBDLF), where

each sensor updates its estimate in two steps: a local update step using its own observations followed

by a consensus step with its neighbors. The authors went on to provide sub-optimal filtering gains

to minimize an upper bound on a quadratic filtering cost, and provided some sufficient conditions

for the convergence of their scheme in terms of the feasibility of a set of linear matrix inequalities

(LMIs).

The gains obtained in [29] are similar, in some sense, to the ones obtained from applying a

centralized Kalman filter, and the convergence results are tied to the convergence properties of a

set of coupled Riccati equations. However, the work in [29] does not, in general, shed light on

the network conditions required to satisfy such LMIs. In this work, we utilize some of the results

developed in the Markovian jump linear systems (MJLS) literature to connect the convergence

properties of these coupled Riccati equations to certain conditions on the network topology and

consensus weights.
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5.1 Problem Setup

For ease of exposition, in this section we consider a CBDLF where consensus is performed

before local filtering, and discuss in Appendix C.3 how these results hold when the order is reversed

to consider the CBDLF in [29].

Here, in the first step, each agent produces an intermediate estimate of the state by performing

a convex combination of its own estimate, Ĝ8 (:), and the state estimates by all other agents within

its communication range, i.e.,

b8 (:) =
#∑
9=1

F8 9 Ĝ 9 (:), 8 = 1, . . . , #, (5.3)

where F8 9 are nonnegative scalars summing up to one (∑#
9=1 F8 9 = 1) with F8 9 > 0 if 8 = 9 or

if agent 8 can obtain information from agent 9 ; otherwise, F8 9 = 0. After all agents complete the

consensus step, each agent then updates its estimate by performing a local filtering step based on

the intermediate estimate b (:), i.e.,

Ĝ8 (: + 1) = �b8 (:) + !8
(
H8 (:) − �8b8 (:)

)
. (5.4)

where !8 is the filter gain.

Let n8 (:) = G(:) − Ĝ8 (:) denote the estimation error for agent 8 at time : . Combining (5.3) and

(5.4), we have2

n8 (: + 1) = (� − !8�8)
#∑
9=1

F8 9 n 9 (:) + l(:) − !8E8 (:). (5.5)

In Appendix C.2, we show that it is possible to derive filtering gains that minimize an upper

bound of the following finite horizon quadratic filtering cost function

� (:) =
:∑
C=0

#∑
8=1

�{‖n8 (:)‖2}, (5.6)

with �{.} denoting the expected value. These sub-optimal filtering gains can be computed in two

steps under the same communication topology and consensus weights used in (5.3)–(5.4). The

2We assume that the initial state G(0), and the noises E8 (:) and l(:) are independent for all
: ≥ 0.
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filtering gains require each agent to store amatrix %8 (:) that represents, as we discuss in Section 5.2,

an upper bound of the error covariance for agent 8.

During the consensus step, the agents compute an intermediate covariance by performing a

convex combination of their own %8 (:) and that of their neighbors, i.e.,

Π8 (:) =
#∑
9=1

F8 9% 9 (:). (5.7)

Then, during the filtering step, each agent computes the local filtering gain to be used in (5.4)

using the intermediate covariance

!8 (:) = �Π8 (:)�′8 ('8 + �8Π8 (:)�
′
8 )
−1, (5.8)

where ′ represents the matrix transpose, and updates its covariance upper bound according to

%8 (: + 1) =�Π8 (:)�′ +& − �Π8 (:)�′8×

(�8Π8 (:)�′8 + '8)
−1�8Π8 (:)�′. (5.9)

SubstitutingΠ8 (:) from (5.7) into (5.9) yields a set of coupled Riccati equations. TheCBDLF in

(5.3)–(5.4) and (5.7)–(5.9) is referred to as the distributed Kalman filter – due to its similarity to the

centralized Kalman filter – and provides an attractive solution to the distributed filtering problem.

However, the numerical tools used to analyze the convergence of this filter and its associated

coupled Riccati equations do not offer much insight into the required network connectivity and

consensus weights.

5.2 Necessary Conditions

For a centralized estimation problem, the detectability of the pair (�,�) plays an important role

in the convergence of the Riccati equation that governs the centralized Kalman filter. Therefore, it

is natural for us to seek a similar notion for the distributed problem. In what follows, we consider

the noise-free dynamics of the estimation errors in (5.5), namely

n8 (: + 1) = (� − !8�8)
#∑
9=1

F8 9 n 9 (:). (5.10)
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Denoting the network-wide estimation error by n (:) = [n1(:)′ · · · n# (:)′]′, one can show that

the noise-free dynamics for this network-wide error are given by

n (: + 1) = Bn (:), (5.11)

where B , diag[� − !8�8] (, ⊗ �=) ∈ B
(
R#=

)
3, with ⊗ denoting the Kronecker product and

, ∈ B(R# ) is the consensus weights matrix whose (8, 9) entry is F8 9 . Clearly, the system in (5.11)

is asymptotically stable if Af (B) < 1, where Af (.) denotes the spectral radius of a linear operator.

Definition 5.2.1 (Detectability) Let � = {�1, . . . , �# } be the set of measurement matrices of all

sensors. For the system in (5.1)–(5.2) and the consensus weights, , we say (�,�,,) is detectable

if there exists a set of gain matrices !8, 8 = 1, ..., # , such that Af (B) < 1.

As we discuss later in this section, detectability in the sense of Definition 5.2.1 is not sufficient

to ensure the convergence of the coupled Riccati equations in (5.7) and (5.9), even though it would

ensure exponential convergence of n (:) to zero in (5.11).

To facilitate the analysis and discussion of these coupled Riccati equations, we make use of

the following notation. Let H=,< denote the linear space made up of all #-sequences of matrices

+ = (+1, . . . , +# ) with +8 ∈ B(R=,R<). For + ∈ H=,< we write +′ = (+′1, . . . , +
′
#
) ∈ H<,= and

say that + ∈ H= , H=,= is symmetric if + = +′. For a symmetric + ∈ H=, we use the notation

+ ∈ H=0 (respectively, + ∈ H=+) when all of the matrices+8 are positive semidefinite (respectively,

positive definite)4. For any + ∈ H=, define the operators E(+) = (E1(+), . . . , E# (+)) ∈ B(H=),

and L(+) = (L1(+), . . . ,L# (+)) ∈ B(H=), where

E8 (+) ,
#∑
9=1

F8 9+ 9 ∈ B(R=), (5.12)

L8 (+) , Γ8E8 (+)Γ′8 ∈ B(R
=), (5.13)

3For a set of # matrices, "8 ∈ B(R=), we denote by diag["8] the #= × #= block-diagonal
matrix with "8 in the diagonal.

4For +, ( ∈ H=, we write + ≥ ( if + − ( = (+1 − (1, . . . , +# − (# ) ∈ H=0, and that + > ( if
+ − ( ∈ H=+.
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for some Γ8 ∈ B(R=), for 8 = 1, ..., # . It can be verified that the spaces H= and R#=
2
are uniformly

homeomorphic, and that any operator Z in B(H=) can be represented in B(R#=2) [30]. The

following result is important in the analysis of the coupled Riccati equations.

Lemma 5.2.2 (Proof in [30]) Consider the operator L(.) defined above. We have that

Af (L) = Af (A),

where A = diag[Γ8 ⊗ Γ8] (, ⊗ �=2) ∈ B
(
R#=

2)
. Furthermore, Af (A) < 1 iff there exists some

% ∈ H=+ such that % − L(%) > 0.

With the above notation, we present the following lemma regarding the upper bounds for the

error covariances along with a stronger definition for detectability.

Lemma 5.2.3 Define Ξ(:) ∈ H=0, where Ξ8 (:) denotes the noise-free covariance of the estimation

error in (5.10) for agent 8 at time : . Let %(:) ∈ H=0 be defined recursively as

%(: + 1) = L(%(:)), %(0) = Ξ(0), (5.14)

with Γ8 = (� − !8�8). Then,

Ξ(:) ≤ %(:), ∀: ≥ 0.

Furthermore, define Σ(:) ∈ H=+ and %(:) ∈ H=+, where Σ8 (:) denotes the covariance of agent 8’s

estimation error with noise in (5.5), and %8 (:) is defined recursively as

%8 (: + 1) = L8 (%(:)) +& + !8'8!′8 , %(0) = Σ(0), (5.15)

with Γ8 = (� − !8�8). Then,

Σ(:) ≤ %(:), ∀: ≥ 0.

Proof: See Appendix C.1. �

Definition 5.2.4 (S-detectability) For the system in (5.1)–(5.2) and the consensus weights, , we

say (�,�,,) is square detectable (S-detectable) if there exists a set of gain matrices !8, 8 = 1, ..., # ,

such that Af (L) < 1 with Γ8 = � − !8�8.
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Note that S-detectability implies that there exists a set of gain matrices such that upper bounds

for the noise-free covariances in (5.14) are asymptotically stable. Using Lemma 5.2.3, it is easy to

check that if (�,�,,) is S-detectable, then it is detectable in the sense of Definition 5.2.1, since

‖n (:)‖2 =
#∑
8=1
‖n8 (:)‖2 =

#∑
8=1

tr (Ξ8 (:)) ≤
#∑
8=1

tr(%8 (:)),

and thus, if Af (L) < 1 then Af (B) < 1. However, detectability in the sense of Definition 5.2.1

does not imply S-detectability. Indeed, consider the case with = = 1, # = 2, � = �1 = �2 = 1,

!1 = 0.3, and !2 = −0.25, then Af (B) = 0.975 while Af (L) = 1.026.

This notion of S-detectability is similar in some way to the notion of mean square detectability

in MJLS. This allows us to leverage some of the results there in analyzing the conditions on

the consensus weights and network connectivity needed for the stability of the coupled Riccati

equations. Specifically, it has been shown in [30] that these coupled Riccati equations converge

to a stabilizing solution5 only if there exists a set of gains !8 such that Af (L) < 1 with Γ8 =

�−!8�8. That is, the coupled Riccati equations converge to a stabilizing solution only if their noise-

free counterparts are stable. This is precisely the definition of S-detectability in this distributed

estimation context.

The remainder of this section is aimed at providing the necessary conditions for S-detectability

of (�,�,,) in terms of network topology and communication weights.. Before presenting the

main result, however, we review some of the relevant results fromMJLS. Specifically, we make use

of the notion of weak detectability (W-detectability), which has been shown to play an important

role in the LQR control problem of MJLS [64, 65].

For some - ∈ H=0, consider the system

- (: + 1) = L(- (:)), (5.16)

5% ∈ H=+ is called a stabilizing solution if %8 = �E8 (%)�′ + & − �E8 (%)�′8 (�8E8 (%)�
′
8
+

'8)−1�8E8 (%)�′ for all 8 = 1, . . . , # , and the gains !8 defined in (5.8) with Π8 = E8 (%) stabilize
(5.14).
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with Γ8 = �8, and introduce the functional

* (:) =
#∑
8=1

CA (-8 (0)′�8 (:)) (5.17)

where the matrices � (:) ∈ H=0 are defined recursively by

�8 (: + 1) = �′8�8 + �
′
8E8 (� (:))�8, �8 (0) = 0. (5.18)

Definition 5.2.5 (W-detectability) Consider the system (5.16). We say that (�,�,,) is W-

detectable if there exist integers #3 , :3 ≥ 0 and scalars 0 ≤ X < 1, W > 0 such that * (#3) ≥

W ‖- (0)‖ whenever ‖- (:3)‖ ≥ X ‖- (0)‖, where the norm is defined as ‖- ‖2 = ∑
8 CA (-′8 -8).

Associated with the matrices � (:) in (5.18), are the set of observability matrices O =

{O1, · · · ,O# }, where

O8 =
[
O8 (0) · · · O8 (=2# − 1)

]′
(5.19)

for each 8 ∈ {1, . . . , #}, where �8 (:) =
∑:−1
C=0 O8 (C), and the matrices O(:) are defined recursively

as

O8 (: + 1) = �′8E8 (O(:))�8, O8 (0) = �′8�8 . (5.20)

With the above definition of W-detectability, the following results (Lemmas 5.2.6 and 5.2.7)

are adapted from [64] and [65].

Lemma 5.2.6 If (�,�,,) is S-detectable, then (�,�,,) is W-detectable.

Lemma 5.2.7 (�,�,,) is W-detectable iff for some G(0) ∈ =D;; (O8), for any 8 ∈ {1, . . . , #}, we

have that lim:→∞ ‖G(:)‖2 = 0.

In our distributed estimation problem, we have �8 = � for all 8, and the condition in Lemma 5.2.7

is equivalent to the detectability of the pairs (�,O8) for all 8, allowing us to employ these results in

deriving necessary conditions on the network for the distributed estimation problem.

For a weight matrix, , define recursively,

F
(;)
8 9
=

#∑
:=1

F
(;−1)
8:

F: 9 , F
(0)
8 9

= X8 9 , (5.21)
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where X8 9 is the Kronecker delta, and recall the definition of a source component [28] in the network.

Definition 5.2.8 (Source component) A set of agents S = {B1, . . . , B?}, S ⊆ {1, . . . , #}, is a

source component of the network if these exists ; > 0, such that F (;)
8 9

> 0 for any 8, 9 ∈ S, and for

any 8 ∈ S and 9 ∉ S, F (;)
8 9
= 0 for all ; > 0.

Definition 5.2.9 (Detectable source component) A source component S = {B1, . . . , B?} is de-

tectable if the pair (�,�S) is detectable, where �S =
[
�′B1 . . . �′B?

]′
.

We can present our main result.

Theorem 5.2.10 (�,�,,) is S-detectable only if:

1. Every source component in the network is detectable.

2. F88 < (1/Af (�D8 ))
2 for each 8 = 1, . . . , # , where �D

8
is the unobservable partition of � using

�8.

Proof: First, we show that the first statement holds. To that end, if (�,�,,) is S-detectable, then

it is necessarily W-detectable, and from Lemma 5.2.7 we have that (�,O8) is detectable for each 8.

It is easy to check that O8 (:) in (5.20) can be written as

O8 (:) =
#∑
9=1

F
(:)
8 9
�′:�′9� 9 �

: .

Let S be a source component, and denote by OS the observability matrix corresponding to the

pair (�,C(). It is known that each agent 8 ∈ {1, . . . , #} is either part of a source component, or

there exists a directed path to 8 from some agent 9 in a source component.

On the one hand, for some agent 8 ∈ S, it follows from Definition 5.2.8 that there exists an ; > 0

such that F (;)
8 9
> 0 for every 9 ∈ S. It can then be checked that for any 8 ∈ S, =D;; (O8) = =D;; (OS),

and S is a detectable source component since for any G(0) ∈ =D;; (OS), lim:→∞ ‖G(:)‖2 = 0.

On the other hand, if 8 ∉ S, then there is no directed path from 8 to 9 ∈ S, and =D;; (O8) ⊆

=D;; (OS). However, since (�,O8) and (�,O 9 ) are detectable, with =D;; (O 9 ) = =D;; (OS), then S

is a detectable source component.
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Now we show that the second statement holds. Indeed, if (�,�,,) is S-detectable, then there

exist gain matrices !8, 8 = 1, . . . , # , such that Af (L) < 1. From Lemma 5.2.2, this implies that

% − L(%) > 0 for some positive definite matrices % ∈ H=+. Following the same approach as in

[66], we have that

%8−(� − !8�8)′
#∑
9=1

F8 9% 9 (� − !8�8) > 0,

⇒ %8−(
√
F88) (� − !8�8)′%8 (

√
F88) (� − !8�8) > 0,

for 8 = 1, . . . , # , and therefore (√F88�,�8) is detectable. We can then find a similarity transforma-

tion to transform the pair (√F88�,�8) into

�̄8 = )8
(√
F88�

)
)′8 =

√
F88


�>
8

0

�2
8

�D
8

 ,
�̄8 = �8)

′
8 =

[
�>
8

0
]
,

where √F88�D8 represents the unobservable modes. Clearly, if (√F88�,�8) is detectable then
√
F88�

D
8
must be stable, and F88 < (1/Af (�D8 ))

2. �

These necessary conditions allow us to consider the weakest communication topologies that

will ensure S-detectability, as well as the maximum values for the self-weights used in consensus.

5.3 Numerical Examples

5.3.1 Example 1

We consider an unstable system with = = 2, monitored by # = 3 sensors, where

� =


2 0

0 2

 ,
�1 =

[
1 0

]
,

�2 =
[
0 1

]
,

�3 =


1 0

0 1

 .
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Clearly, we have that (�,�1) and (�,�2) are not detectable, implying that agents 1 and 2 cannot

estimate the process on their own. On the other hand, it is easy to check that the pairs

(�,�3) ,
©­­«�,


�1

�2


ª®®¬ ,

©­­«�,

�1

�3


ª®®¬ ,

©­­«�,

�2

�3


ª®®¬

are all detectable. Therefore, to satisfy the condition that (�,O1) is detectable, the minimal

connectivity requirement we need is F12 > 0 or F13 > 0. Similarly for (�,O2) to be detectable,

we need F21 > 0 or F23 > 0. Finally, (�,O3) is detectable without needing a path from any

other agent. Figure 5.1 represents the communication networks with minimum links that satisfy

these conditions. It is easy to check in Figure 5.1 that every source component in those graphs is

detectable, and addingmore communication links between the nodes will not affect the detectability

of (�,O8).

Note that the spectral radius of the unobservable partitions for agents 1 and 2 is Af (�D1) =

Af (�D2) = 2, and therefore we require F11 < 0.25 and F22 < 0.25. To show the importance of the

values of self weights F88, we simulate the response of a distributed Kalman filter using (5.7)–(5.9)

with the filtering gains shown in (5.8) for the case when agent 3 is disconnected from agents 1 and

2. Figure 5.2 shows the norms of the covariance matrices under different values for F11 and F22,

Figure 5.1: The minimal communication links required to satisfy the detectability require-
ment of all (G,Oi) pairs for Example 1.
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Figure 5.2: Comparison of the norms of the covariance matrices under the consensus-then-
filter distributed Kalman filter for Example 1. ]g represents the network that satisfies
(1/r2 (Gu

i ))
2.

where we used the following weights

,6 =


0.24 0.76 0

0.76 0.24 0

0 0 1


,

for the case that satisfies the condition F11, F22 < 0.25, and

,2 =


0.25 0.75 0

0.75 0.25 0

0 0 1


, ,1 =


0.26 0.74 0

0.74 0.26 0

0 0 1


for the cases that violate this condition, and the simulationswere initializedwith G(0) =

[
−15 15

]′
,

Ĝ8 (0) =
[
0 0

]′
, %8 (0) = 10�, & = 0.1�, and '8 = 0.1�.

Figure 5.2 shows that %3(:) converges very quickly to its steady state value without agent 3

needing additional information from its neighbors, since it can estimate the process on its own. An

interesting behavior is observed for the coupled dynamics for %1(:) and %2(:) as F88 approaches

(1/Af (�D8 ))
2. We see that covariance matrices for agents 1 and 2 converge to steady values when
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F88 < 0.25 and grow unbounded for F88 > 0.25, highlighting the importance of the consensus

weights when performing distributed estimation.

5.3.2 Example 2

We consider an unstable system with = = 3, monitored by # = 3 sensors, where

� =


0.8147 0.8147 0.2785

0.9058 0.9058 0.5469

0 0 0.9575


,

�1 =
[
1 0 0

]
,

�2 =
[
0 1 0

]
,

�3 =
[
0 0 1

]
.

It can be checked that (�,�1) and (�,�2) are observable, implying that agents 1 and 2 can

estimate the process on their own. On the other hand, (�,�3) is not detectable, and agent 3

requires information from agents 1 or 2 to successfully estimate the process. Therefore, to satisfy

the condition that (�,O3) is detectable, the minimal connectivity requirement we need is F31 > 0

or F32 > 0.

Note that the spectral radius of the unobservable partitions for agent 3 is Af (�D3) = 1.7205, and

therefore we require F33 < 0.3378. We simulate the response of a distributed Kalman filter using

(5.7)–(5.9) with the filtering gains shown in (5.8) for the case when agent 3 is obtains information

from both agents 1 and 2. Figure 5.3 shows the norms of the covariance matrices under different

values for F33 where we used the following weights

,6 =


1 0 0

0 1 0

0.34 0.34 0.32


,

for the case that satisfies the condition F33 < 0.3378, and

,1 =


1 0 0

0 1 0

0.33 0.33 0.34


,
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Figure 5.3: Comparison of the norms of the covariance matrices under the consensus-then-
filter distributed Kalman filter for Example 2. ]g represents the network that satisfies
(1/r2 (Gu

i ))
2.

for the case which violates that condition, and the simulations were initialized with G(0) =[
−2.2691 −2.0143 1.6173

]′
, Ĝ8 (0) =

[
0 0 0

]′
, %8 (0) = 100�, & = �, and '8 = �.

Figure 5.3 shows that %1(:) and %2(:) converge to their respective steady state values without

agent needing additional information from its neighbors, since they can estimate the process on their

own. An interesting behavior is observed for the coupled dynamics for %3(:) as F33 approaches

(1/Af (�D3))
2, further highlighting the importance of the consensus weights.

5.4 Summary and Future Work

Weconsider the problemof distributed estimation of anLTI systemby a network of sensors using

consensus-based distributed linear filters, where the agents update their estimates by performing

consensus followed by local filtering. We present a distributed version of the centralized Kalman

filter, in which the filtering gains minimize an upper bound of a quadratic filtering cost. These

filtering gains are computed using a set of coupled Riccati equations that, in turn, can be updated

in a distributed manner under the same network. We then provide the notion of S-detectability that

is necessary for the convergence of these coupled Riccati equations, and build on that to provide

necessary conditions in terms of the minimum network connectivity and a limit on the self-weights
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used during the consensus step. Future work will first focus on the other half of this problem, in

which we consider the sufficient conditions for S-detectability and their implication on the network

in order to ensure successful estimation and asymptotic convergence of the distributed Kalman

filters. Future work will also seek to extend these results to distributed estimation of time-varying

systems, and investigate the conditions for convergence of the coupled Riccati equations with

time-varying matrices.
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CHAPTER 6

SUMMARY AND FUTUREWORK

6.1 Summary

In this dissertation, we discussed the role gliding robotic fish play in environmental moni-

toring, and focus on their application to acoustic telemetry of fish movement. We presented the

improvements of mechanical and electrical designs of the gliding robotic fish to enhance their

serviceability, operational time, and computational power.. These improvements were facilitated

by the introduction of a water-tight interface that allowed for opening and closing the robot for

regular maintenance and inspection. The new serviceable nature of these robots allowed us to

rapidly test new electrical systems. The final design of the robot featured a Raspberry Pi computer,

which operates on a Linux-like environment that facilitated the development of high-level tasks,

such as navigation and data storage.

The new design allowed for a larger sensor payload to be integrated into the robot, as well as for

carrying an acoustic receiver for detecting acoustic signals. Gliding robotic fish prototypes were

tested in Higgins Lake to investigate the applicability of these robots to tracking tagged animals in

fresh and shallow water. The field tests were also helpful in evaluating gliding- and swimming-

based navigation strategies that drive the robot to a specified GPS location. The lake experiments

showed that the robot can indeed carry an acoustic receiver and detect acoustic signals reliably at

a distance of approximately 300 m. Furthermore, these tests shed the light onto the importance of

aligning the acoustic receiver towards the tag to maximize detection, as the detection performance

of the mobile receiver degraded when the receiver was facing away from the target. The depth and

pitch of the robot also affected the detection performance of the mobile receiver. However, the

effect of these variables was less prominent than facing the receiver away from the transmitter.

Motivated by the problem of tracking fish movement, we then investigated the problem of

localization and tracking of a moving target by a network of robots. A distributed EKF was
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presented to estimate the target’s position based on the TDOA measurements model, without the

need for centralized processing of these measurements. Under the proposed scheme, we showed

that any given agent in the network can accurately estimate the target’s position when it is part

of a connected network with 4 non-coplanar agents. We then presented a movement strategy for

the network to actively track the target, ensuring adequate localization of the target as it moves in

space. A tuning parameter was introduced to achieve a balance between estimation performance

and energy consumption.

The distributed localization problem motivated the study of the more general distributed esti-

mation problem, in which a network of sensors are used to monitor and estimate the state of an LTI

system. Under this general setup, it is assumed that interactions between agents are dictated by a

directed and weighted communication graph. We then presented a suboptimal distributed filtering

strategy in which each agent updates its estimates in two steps: a consensus step followed by a

filtering step. We showed that the suboptimal filtering gains are related to the convergence of a set

of coupled Riccati equations. We then went on to discuss the necessary conditions in terms of graph

topology and consensus weights needed for the convergence of these coupled Riccati equations.

6.2 Future Work

The work presented here can be further improved in future studies. The main drawback that the

current robot design faces involves the time and resources needed for fabrication andmanufacturing.

Future designs will focus on reducing the cost and time needed for fabrication. As for the electrical

side, future designs will incorporate underwater acoustic communication, satellite communication,

and solar charging for these robots. Furthermore, additional work will be done to fully characterize

the operational specifications of these robots, such as their capability of overcoming currents,

battery life, and maximum depth rating.

Additional field trials will also be carried out to further characterize the performance of gliding

robotic fish as a mobile receiver platform. In particular, future work will focus on conducting

more replicate runs over a range of environmental variables (e.g., wind, noise, stratification), and
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examine different methods to mitigate shielding the acoustic signals from the receivers. As an

example, future work can compare the detection performance of vertically mounted receivers, as

well as investigating navigation controllers that take into account the relative positions between

the tag and receiver. Ultimately, future work will seek experimental validation of TDOA-based

localization and tracking of an acoustic tag using a network of gliding robotic fish operating as

mobile receivers. Future work can also consider stochastic models for the moving target, such as

the correlated random walk model [67], along with different filtering methodologies, such as the

particle filtering [68].

Finally, future work will focus on the other half of the distributed estimation problem. Specifi-

cally, sufficient conditions for the convergence of the coupled Riccati equations in terms of network

topology and consensus weights will be investigated. It will also be of interest to extend the results

obtained here to time-varying systems, and consider the necessary and sufficient conditions for the

convergence of the coupled Riccati equations with time-varying matrices.
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APPENDIX A

STOCHASTIC STABILITY FOR DISTRIBUTED TDOA-BASED LOCALIZATION OF A
MOVING TARGET

Analyzing the stability of the extendedKalmanfilter has been investigated in [56] and [69]. A similar

framework to the one presented in [56] can be utilized for analyzing the stochastic stability of the

EKF under the weighted averaging scheme in (4.26)–(4.28), and (4.32)–(4.35) when implemented

by each agent in the network.

Throughout this appendix, ‖ · ‖ denotes the Euclidian norm of real vectors or the spectral

norm of real matrices, �{G} is the expectation value of G, and �{G |H}, the expectation value of G

conditioned on H. Moreover, R@ denotes the real @–dimensional vector space, �= denotes the = × =

identity matrix, and � ⊗ � denotes the Kronecker product of matrices � and �.

Let 3 denote the dimension of in which the target is moving in space (3 = 2 for 2D, and

3 = 3 for 3D), and let = = 23 denote the dimension of the target’s state. For ease of writing, let

G: = G(:), and similarly let Ĝ8
:
= Ĝ8 (:), G̃8: = G̃8 (:),  

8
:
=  8 (:), and �8: = �8 (:), Furthermore, let

I8
:
denote agent 8’s measurement at time instant : (rather than H8 (:) in (4.2), for consistency with

discrete-time literature), and for notational consistency, let ℎ8 (·) denote the measurement model

ℎ8 (·) in (4.3). Finally, let E8
:
denote the measurement noise for agent 8 with covariance matrix '8.

The one step formulation of the each agent’s estimation in (4.29) can be written as

Ĝ8
:+1 =

#∑
9=1

F8 9

[
�Ĝ

9

:
+ � 9

:

(
I
9

:
− ℎ 9 (Ĝ 9

:
)
)]

(A.1)

Similarly, a one step formulation of the 8–th agent’s error covariance matrix in (4.33)–(4.35) can

be derived by substituting (4.35) and (4.34) into (4.33), and denoting %8 (: |: − 1) by %8
:

%8
:+1 =

#∑
9=1

F8 9

[
�(�= −  9:�

9

:
)% 9
:
(�= −  9:�

9

:
)) �)

]
+

#∑
9=1

F8 9

[
� 

9

:
' 9 

9

:

)
�)

]
+ �&�) (A.2)

For notation consistency, we redefine  8
:
as

 8
:
= %8

:
�8
:

)
(
�8
:
%8
:
�8
:

) + '8
)−1

(A.3)
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In the averaged EKF formulation, we note the use of the linearized measurement function, �8
:
.

It is possible to expand the measurement function ℎ8
:
via

ℎ8 (G: ) − ℎ8 (Ĝ8: ) = �
8
:
(G: − Ĝ8: ) + j

8 (G: , Ĝ8: ) (A.4)

The 8-th agent’s estimation error is defined as

G̃8
:
= G: − Ĝ8: (A.5)

which can be obtained by subtracting (A.1) from (4.5), yielding

G̃8
:+1 =

#∑
9=1

F8 9

[
�(� −  9

:
�
9

:
)G̃ 9
:
+ d 9

:
+ k 9

:

]
(A.6)

where

d8
:
= −� 8

:
j8 (G: , Ĝ8: ) (A.7)

k8
:
= �F: − � 8:E

8
:

(A.8)

which follows the form in (4.30), with [ 9 (:) = d 9: + k
9

:
.

A.1 Error Bounds for the Averaged EKF

The basis of the convergence analysis is the stochastic stability lemma [49, 50], which is given

as follows:

Lemma A.1.1 If there exist real numbers Ē, E, ` > 0 and 0 < U ≤ 1, and there is a stochastic

process +: (Z: ) with the following properties:

E‖Z: ‖2 ≤ +: (Z: ) ≤ Ē‖Z: ‖2 (A.9)

�{+:+1(Z:+1) |Z: } −+: (Z: ) ≤ ` − U+: (Z: ) (A.10)

then the random process Z: is exponentially bounded in mean square with probability one, as in

�{‖Z: ‖2} ≤
Ē

E
�{‖Z0‖2} (1 − U): +

`

E

:−1∑
;=1
(1 − U); (A.11)

for every : ≥ 0. Moreover, the stochastic process is bounded with probability one.
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Proof: The proof of this lemma is provided in [50] and [56]. �

Let x̃: =
[
G̃1)
:

. . . G̃#
)

:

])
denote the network-wide estimation error of all agents in the

network. Using (A.6), we can obtain the dynamics for the network-wide estimation error

x̃: = (, ⊗ �) (�23# −  :�: )x̃: + (, ⊗ �23)1: + (, ⊗ �23)7: (A.12)

Here, : = blkdiag
[
 1
:

. . .  #
:

]
and�: = blkdiag

[
�1
:
. . . �#

:

]
are block diagonalmatrices

for the filtering gain and linearized measurement matrices, respectively, while, is a stochastic ma-

trix representing the averaging weights, [,]8 9 = F8 9 . The terms 1: and 7: are the concatenations

of the terms d8
:
and k8

:
, respectively. From (A.7) and (A.8), we can write

1k = −(�# ⊗ �) : 6(x: , x̂: ) (A.13)

7: = (�# ⊗ �)w: − (�# ⊗ �) :v: (A.14)

where

w: = 1# ⊗ F: ,

x: = 1# ⊗ G: ,

v: =
[
E1)
:

. . . E#
)

:

])
,

and

6(x: , x̂: ) =
[
j1(G: , Ĝ1

:
)) . . . j# (G: , Ĝ#: )

)
])
.

Similarly, we define the network-wide error covariance, %: = blkdiag
[
%1
:
. . . %#

:

]
. Using

the matrix inversion lemma, it can be noted that (A.2) is equivalent to

%8
:+1 =

#∑
9=1

F8 9

[
�%

9

:
�) − �% 9

:
�
9)

:
 
9)

:
�)

]
+ �&� (A.15)

we get

%:+1 = (
√
, ⊗ �)%: (

√
, ⊗ �)) − (

√
, ⊗ �)%:�):  

)
:
(
√
, ⊗ �)) + (

√
,
√
,
) ⊗ �&�)

(A.16)
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Furthermore, we restrict %: to have a block diagonal structure in order to capture the distributed

nature of this problem. The network-wide gain matrix  : can then be expressed as

 : = %:�
)
:
(�:%:�): + ')

−1 (A.17)

where the matrix ' = blkdiag
[
'1 . . . '#

]
is the network-wide measurement noise covariance

matrix.

Before stating the main result of this section, we present the following lemmas that will aid in

analyzing the averaged EKF.

Lemma A.1.2 Consider the system given by (4.5), (4.2) and the averaged EKF in (A.1)–(A.3). Let

N , ∑#
8=1N8, and assume that there exist positive real numbers 0̄, ℎ̄, ?̄, ?, X, fF , fE > 0 such that

the following inequalities hold for all : ≥ 0:

‖�‖ ≤ 0̄ (A.18)

��) ≤ X� (A.19)

‖�: ‖ ≤ ℎ̄ (A.20)

?� ≤ %: ≤ ?̄� (A.21)

& ≥ f2
F �23 (A.22)

' ≥ f2
E �|N | (A.23)

then there exists a real number 0 < U < 1 such that the inequality

(�23# −  :�: )) (, ⊗ �))%−1
:+1 × (, ⊗ �) (�23# −  :�: ) ≤ (1 − U)%

−1
:

(A.24)

with  : given by (A.17), holds for : ≥ 0.

Proof: Rearranging the terms in (A.16)

%:+1 =(
√
, ⊗ �)

[
(�23# −  :�: )%: (�23# −  :�: ))

+ :�:%: (�23# −  :�: ))

+(�# ⊗ �&�) )
]
(
√
, ⊗ �)) (A.25)
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Now, we consider the term  :�:%: (�23# −  :�: )) . With (A.17), it can be verified that

%: (�23# −  :�: )) = %: − %:�): (�:%:�
)
:
+ ')−1�:%: (A.26)

which is symmetric, and applying the matrix inversion lemma, we get

%: (�23# −  :�: )) = (%−1
:
�)
:
'−1�: )−1 > 0 (A.27)

because %−1
:
> 0. Additionally, from (A.17), and since %: > 0 and ' > 0,

 :�: = %:�
)
:
(�:%:�): + ')

−1�: ≥ 0 (A.28)

From (A.27) and (A.28), it can be seen that

 :�:%: (�23# −  :�: )) ≥ 0 (A.29)

Therefore, from (A.25) and (A.29), the inequality

%:+1 ≥ (
√
, ⊗ �)

[
(�23# −  :�: )%: (�23# −  :�: )) + (�# ⊗ �&�) )

]
(
√
, ⊗ �)) (A.30)

holds, and can be rewritten as

%:+1 ≥ (
√
, ⊗ �) (�23# −  :�: )×[

%: + (�23# −  :�: )−1(�# ⊗ �&�) ) (�23# −  :�: )−)
]

× (�23# −  :�: )) (
√
, ⊗ �)) (A.31)

From (A.17), and the assumed bounds (A.18)–(A.23), it is easy to see that

‖ : ‖ ≤
?̄ ℎ̄

f2
E

(A.32)

which leads to

%:+1 ≥ (
√
, ⊗ �) (�23# −  :�: ) ×


%: +

Xf2
F(

1 + ?̄ ℎ̄

f2
E

)2 �23#


(�23# −  :�: )) (

√
, ⊗ �))
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Taking the inverse of both sides, and multiplying from the left by (�23# − :�: )) (
√
, ⊗ �)) and

from the right by (
√
, ⊗ �) (�23# −  :�: ) we get

(�23#− :�: )) (
√
, ⊗ �))%−1

:+1(
√
, ⊗ �)× (�23#− :�: ) ≤


1 +

Xf2
F

?̄

(
1 + ?̄ ℎ̄

f2
E

)2


−1

%−1
:

(A.33)

Since, is stochastic,

(�23# −  :�: )) (, ⊗ �))%−1
:+1

× (, ⊗ �) (�23# −  :�: ) ≤ (�23# −  :�: ))

× (
√
, ⊗ �))%−1

:+1(
√
, ⊗ �) (�23# −  :�: )

≤ (1 − U)%−1
:

(A.34)

i.e., inequality (A.24) with

1 − U =

©­­­­­«
1 +

Xf2
F

?̄

(
1 + ?̄ ℎ̄

f2
E

)2

ª®®®®®¬

−1

(A.35)

�

It is worth noting that conditions (A.18)–(A.20) and (A.22)–(A.23) are easy to satisfy, since we

assume knowledge of the system’s matrices. Condition (A.21) is specifically addressed in Section

III-B.

Lemma A.1.3 Let the assumptions in Lemma A.1.2 hold, and assume that there exist positive real

numbers ^j, nj > 0, such that the nonlinear function 6(b1, b2) in (A.13) is bounded by

‖6(b1, b2)‖ ≤ ^j‖b1 − b2‖2 (A.36)

for b1, b2 ∈ R23# with ‖b1 − b2‖ < nj, then there is a positive real number ^d > 0 such that

1)
:
(, ⊗ �=))%−1

:+1 [2(, ⊗ �) (�23# −  :�: )x̃: + (, ⊗ �23)1: ] ≤ ^d ‖x̃: ‖
3 (A.37)

holds for ‖x̃: ‖ ≤ nj.

96



Proof: From (A.13) and (A.32), a bound can be established on ‖1: ‖1

‖1: ‖ ≤
0̄ ?̄ ℎ̄

f2
E

‖6(x: , x̂: )‖ (A.38)

For ‖x̃: ‖ = ‖x: − x̂: ‖ ≤ nj, using (A.36), one gets

‖1: ‖ ≤
0̄ ?̄ ℎ̄

f2
E

^j‖x̃: ‖2 , ^′‖x̃: ‖2 ≤ ^′nj‖G̃8: ‖ (A.39)

which in turn leads to

1)
:
(, ⊗ �=))%−1

:+1 [2(, ⊗ �) (�23# −  :�: )x̃: + (, ⊗ �23)1: ]

≤ ^′ 1
?

[
20̄

(
1 + ?̄ ℎ̄

2

f2
E

)
+ ^′nj

]
‖x̃: ‖3 (A.40)

i.e., inequality (A.37) with

^d = ^
′ 1
?

[
20̄

(
1 + ?̄ ℎ̄

2

f2
E

)
+ ^′nj

]
(A.41)

�

Lemma A.1.4 Let the assumptions in Lemma A.1.2 hold, then there is a positive real number

^k > 0 such that

�{7:)%−1
:+17: } ≤ ^k (A.42)

for all : ≥ 0.

Proof: Using the definition of 7: given by (A.14), and since w: and v: are uncorrelated, we can

expand the expectation expression in (A.42) via

�{7:)%−1
:+17: } = �{w

)
:
(�# ⊗ �))%−1

:+1(�# ⊗ �)w: }

+ �{v)
:
 )
:
(�# ⊗ �))%−1

:+1(�# ⊗ �) :v: }
(A.43)

From the bound in (A.18)–(A.23) and (A.32), equation (A.43) can be converted to an inequality

via

�{7:)%−1
:+17: } ≤

1
?
�{w)

:
(�# ⊗ �)) (�# ⊗ �)w: } +

1
?

(
0̄ ?̄ ℎ̄

f2
E

)2

�{v:) v: } (A.44)
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Because both sides of (A.44) are scalars, we can take the trace of the right-hand side without

changing its value

�{7:)%−1
:+17: } ≤

1
?
tr

(
(�# ⊗ �)�{w:w): }(�# ⊗ �)

)
)
+ 1
?

(
0̄ ?̄ ℎ̄

f2
E

)2

tr
(
�{v:v:) }

)
=

23#Xf2
F

?
+ N 0̄

2 ?̄2 ℎ̄2

?f2
E

(A.45)

Defining

^k ,
23#Xf2

F

?
+ N 0̄

2 ?̄2 ℎ̄2

?f2
E

(A.46)

leads to �{7:)%−1
:+17: } ≤ ^k . �

With the above results, we can now present the following theorem regarding the stochastic

stability of the averaged EKF.

Theorem A.1.5 Consider the movement model for the target given by (4.5) and the nonlinear

measurement model for each agent given by (4.2), along with the averaged EKF in (A.1)–(A.3),

and let the assumptions of Lemmas A.1.2 and A.1.3 hold. then the network-wide estimation error

x̃: given by (A.12) is exponentially bounded in mean square with probability one.

Proof: We choose

+: (x̃: ) = x̃:%
−1
:
x̃: (A.47)

From (A.21), we have
1
?̄
≤ +: (x̃: ) ≤

1
?

(A.48)

which satisfies the first condition of Lemma A.1.1 with E = 1
?̄ and Ē = 1

? . What remains is to

establish an upper bound on �{+:+1(x̃:+1) |x̃: }. Inserting (A.12) into (A.47) yields

+:+1(x̃:+1) = [(, ⊗ �) (�23# −  :�: )x̃:+

(, ⊗ �23)1: + (, ⊗ �23)7: ]) %−1
:

× [(, ⊗ �) (�23# −  :�: )x̃:

+(, ⊗ �23)1: + (, ⊗ �23)7: ]

(A.49)
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Taking the conditional expectation�{+:+1(x̃:+1) |x̃: } and applyingLemmasA.1.2,A.1.3, andA.1.4

for ‖x̃: ‖ ≤ nj we obtain

�{+:+1(x̃:+1) |x̃: } ≤ (1 − U)+: (x̃: )

+ ^dnj‖x̃: ‖ + ^k
(A.50)

Defining n = min
(
nj,

U
2?̄^d

)
, then for ‖x̃k ‖ ≤ n

^d ‖x̃k ‖‖x̃k ‖2 ≤
U

2?̄
‖x̃k ‖2 ≤

U

2
+: (x̃: ) (A.51)

Applying inequality (A.51) to (A.50) yields

�{+:+1(x̃:+1) −+: (x̃: ) ≤ −
U

2
+: (x̃: ) + ^k (A.52)

which satisfies the second condition of Lemma A.1.1, ensuring that the network-wide estimation

error x̃: remains bounded in mean square. �

A.2 Boundedness of Averaged Covariance Matrix

The boundedness of the covariance matrix in inequality (A.21) under the proposed method

must be addressed. To that end, consider the operator originally presented in [70].

Lemma A.2.1 Let V denote the set of matrices {%1, . . . , %# } and S denote the set of matrices

{"1, . . . , "# }. Define the following operator

5 8
=+1(S, V) =

#∑
9=1

F8 9"
9 5
9
= (S, V)" 9) (A.53)

with

5 81(S, V) =
#∑
9=1

F8 9"
9% 9" 9) (A.54)

If there exist positive-definite matrices ^ = {-1, . . . , -# } such that -8 > 5 81(S, ^), then the

following statements hold for all 8 = 1, . . . , #:

1. For all bounded positive semi-definite matrices %8 ≥ 0, lim
=→∞

5 8= (S, V) = 0.

2. For all bounded positive semi-definite matrices %80 ≥ 0, and *8 ≥ 0, the sequences %8
:+1 =

5 81(S, V: ) +*
8 are bounded.
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Proof:

1. Since %8 ≥ 0 and -8 > 0, then there exists a constant U > 0 such that %8 ≤ U-8,∀8. Then it

is clear that 5 8= (S, V) ≤ U 5 8= (S, ^). Additionally, since 5 81(S, ^) < -
8, then there exists a

constant A ∈ (0, 1) such that 5 81(S, ^) ≤ A-
8. Then, 5 82(S, ^) ≤ A 5

8
1(S, ^) ≤ A

2-8, and

sequentially, 5 8= (S, ^) ≤ A=-8. Therefore, 5 8= (S, V) ≤ UA=-8 and lim
=→∞

5 8= (S, V) = 0.

2. From the definition of %8
:+1, we have

%82 =
#∑
9=1

F8 9"
9%

9

1"
9) +*8

=

#∑
9=1

F8 9"
9 5
9

1 (S, V0)" 9)

+
#∑
9=1

F8 9"
9* 9" 9) +*8

= 5 82(S, V0) + 5 81(S,[) +*
8

and by induction, it can be shown that

%8
:+1 = 5 8

:+1(S, V0) +
:∑
;=1

5 8
;
(S,[) +*8

From the proof of Part 1, there exist constants U, ` > 0 and 0 < A < 1 such that 5 8
:
(S, V0) ≤

UA:-8 and*8 ≤ `-8, which is used to show that

%8
:
≤

(
U + `

1 − A

)
-8

�

Corollary A.2.2 For given matrices �, �, &, X = {'1, . . . , '# }, and time varying matrices N: =

{�1
:
, . . . , �#

:
}, define the operator

68
:
(V) =

#∑
9=1

F8 9

[
�(� −  9

:
�
9

:
)% 9 (� −  9

:
�
9

:
)) �)

]
+

#∑
9=1

F8 9

[
� 

9

:
' 9 

9

:

)
�)

]
+ �&�)

(A.55)
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where

 8
:
= %8�8

:

)
(
�8
:
%8�8

:

) + '8
)−1

If there exist positive-definite matrices ^ = {-1, . . . , -# } such that -8 > 5 81(�(� − Q:N: ), ^)

for all : ≥ 0, where 5 81(·, ·) is defined in Lemma A.2.1, then for all positive semi-definite matrices

%80 ≥ 0, the sequences %8
:+1 = 6

8
:
(V: ) are bounded.

Proof: This corollary can be proven by directly applying the results in Lemma A.2.1, defining

"8 = �(� −  8
:
�8
:
) and*8 = ∑#

9=1 F8 9

[
� 

9

:
' 9 

9

:

)
�)

]
+ �&�) . �

Examining (A.2), it can be seen that the error covariance matrix under the averaged scheme

takes the form %8
:+1 = 68

:
(V: ). Therefore, by Corollary A.2.2, %8

:
remains bounded under the

proposed scheme if the conditions of Lemma A.2.1 are satisfied.
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APPENDIX B

SUPPLEMENTAL RESULTS FOR TDOA-BASED DISTRIBUTED LOCALIZATION
AND TRACKING OF A MOVING TARGET

B.1 Cases (a), (b), and (c) in Theorem 4.2.3

We show that rank(O1) = 6 for the remaining three cases in Fig. 4.3.

Case (a)

This case is the easiest to examine, as agent 1 has a sufficient number of neighbors. Themeasurement

matrix �1(:) has the following structure

�1(_) =


_1 _2 _3 0 0 0

_4 _5 _6 0 0 0

_7 _8 _9 0 0 0


, (B.1)

and from the discussion on decentralized approach, the pair (�, �1(_)) is generically observable.

It immediately follows that rank(O1) = 6, since

rank (O1) = rank

©­­­­­­­­«



[,]11 �1(_)�[
,2]

11 �1(_)�2

...[
,7]

11 �1(_)�7



ª®®®®®®®®¬
= 6,

for almost all values of ) and _.
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Case (b)

The structure of �8 (:) for 8 = 1, . . . , 4 is

�1(_) =
[
_1 _2 _3 0 0 0

]
,

�2(_) =


−_1 −_2 −_3 0 0 0

_4 _5 _6 0 0 0

_7 _8 _9 0 0 0


,

�3(_) =
[
−_4 −_5 −_6 0 0 0

]
,

�4(_) =
[
−_7 −_8 −_9 0 0 0

]
.

We first note that the pair

©­­«�,

�1(_)

�2(_)


ª®®¬ ,

is generically observable, which can be shown following the same analysis in the discussion for the

decentralized approach. This in turn, ensures that

rank

©­­­­­­­­­­­­«



�1(_)

�2(_)
...

�1(_)�6

�2(_)�6



ª®®®®®®®®®®®®¬
= 6,

for almost all values of ) and _, and it immediately follows that rank(O1) = 6.
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Case (c)

The structure of �8 (:) for 8 = 1, . . . , 4 follows

�1(_) =

_1 _2 _3 0 0 0

_4 _5 _6 0 0 0

 ,
�2(_) =

[
−_1 −_2 −_3 0 0 0

]
,

�3(_) =

−_4 −_5 −_6 0 0 0

_7 _8 _9 0 0 0

 ,
�4(_) =

[
−_7 −_8 −_9 0 0 0

]
.

Following similar procedures to those presented in the decentralized approach discussion, it

can be shown that the pair

©­­­­­«
�,


�1(_)

�3(_)

�4(_)


ª®®®®®¬
,

is generically observable, and that

rank

©­­­­­­­­­­­­­­­­­­«



�1(_)

�2(_)

�3(_)
...

�1(_)�6

�2(_)�6

�3(_)�6



ª®®®®®®®®®®®®®®®®®®¬

= 6,

for almost all values of ) and _. Therefore, rank(O1) = 6 for almost all values of ) and _.

B.2 Formation Control

In this section, we provide the details for the dynamic feedback linearization controller for the

system shown in (4.44). We first augment the system dynamics with another integrator on the 08
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input channel

¤08 = D8,1, (B.2)

with D8,1, D8,2, and D8,3 constituting the new control inputs to the 8th robot.

Then we define the position coordinates of agent 8 as the outputs to perform feedback lineariza-

tion 
I8,1

I8,2

I8,3


=


@1(A8)

@2(A8)

@3(A8)


=


?G
8

?
H

8

?I
8


. (B.3)

The augmented robot model in (4.44), (B.2) and output (B.3) can be written in compact form

¤A8 = 5 (A8) + 6(A8)D8,

I8 = @(A8),
(B.4)

where

A8 =



?G
8

?
H

8

?I
8

E8

q8

W8

08

l8,q

l8,W



, 5 (A8) =



E8 cos (q8) cos (W8)

E8 sin (q8) cos (W8)

E8 sin (W8)

08

l8,q

l8,W

0

0

0



, (B.5)
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and 6(A8) =
[
61 62 63

]
, with

61 =



0

0

0

0

0

0

1

0

0



, 62 =



0

0

0

0

0

0

0

1

0



, 63 =



0

0

0

0

0

0

0

0

1



. (B.6)

Noting that !61!
:
5
@ 9 (A8) = !62!

:
5
@ 9 (A8) = !63!

:
5
@ 9 (A8) = 0 for : = 0, 1 and for all 9 = 1, 2, 3,

and that !61!
2
5
@ 9 (A8) ≠ 0, !62!

2
5
@ 9 (A8) ≠ 0, and !63!

2
5
@ 9 (A8) ≠ 0, the decoupling matrixA(G8),

defined as

A(A8) =


!61!

2
5
@1(A8) !62!

2
5
@1(A8) !63!

2
5
@1(A8)

!61!
2
5
@2(A8) !62!

2
5
@2(A8) !63!

2
5
@2(A8)

!61!
2
5
@3(A8) !62!

2
5
@3(A8) !63!

2
5
@3(A8)


, (B.7)

is nonsingular as long as E8 ≠ 0, and W8 ≠ ±c2 . Now, we define Z8 as Z8 = ) (G8), where

Z8,1 =@1(A8)

Z8,2 =! 5 @1(A8)

Z8,3 =!
2
5
@1(A8)

Z8,4 =@2(A8)

Z8,5 =! 5 @2(A8)

Z8,6 =!
2
5
@2(A8)

Z8,7 =@3(A8)

Z8,8 =! 5 @3(A8)

Z8,9 =!
2
5
@3(A8)

(B.8)
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The model can then be written in terms of the transformed state Z8

¤Z8,1 =Z8,2

¤Z8,2 =Z8,3

¤Z8,3 =!3
5
@1(A8) +

3∑
9=1

!6 9 !
2
5
@1(A8)

¤Z8,4 =Z8,5

¤Z8,5 =Z8,6

¤Z8,6 =!3
5
@2(A8) +

3∑
9=1

!6 9 !
2
5
@2(A8)

¤Z8,7 =Z8,8

¤Z8,8 =Z8,9

¤Z8,9 =!3
5
@3(A8) +

3∑
9=1

!6 9 !
2
5
@3(A8)

(B.9)

Combining the equations for ¤Z8,3, ¤Z8,6 and ¤Z8,9,
¤Z8,3
¤Z8,6
¤Z8,9


=


!3
5
@1(A8)

!3
5
@2(A8)

!3
5
@3(A8)


+ A(A8)D8, (B.10)

allows for the selection of linearizing control

D8 = A−1(A8)

©­­­­­«
d8 −


!3
5
@1(A8)

!3
5
@2(A8)

!3
5
@3(A8)


ª®®®®®¬
. (B.11)

Substituting (B.11) into (B.10), allows us to rewrite (B.9) as

¤Z8 =


�̄ 0 0

0 �̄ 0

0 0 �̄


Z8 +


�̄ 0 0

0 �̄ 0

0 0 �̄


d8, (B.12)
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where

�̄ =


0 1 0

0 0 1

0 0 0


, �̄ =


0

0

1


, (B.13)

generating a linear map from the agent’s virtual control d8 to its 3D position.

The estimated position of the moving target is fed into a feedback linearization control strategy

to drive each agent to its desired position. The desired state for agent 8 can be obtained from its

estimate of target’s state:

?★8 = ?̂8 + 38 (B.14)

E★8 = ‖ ¤̂?8 ‖ (B.15)

q★8 = tan−1
(
¤̂?H
8
¤̂?G
8

)
(B.16)

W★8 = sin−1
(
¤̂?I
8
‖ ¤̂?8 ‖

)
(B.17)

(B.18)

where 38 is a constant vector that defines the position of agent 8 relative to the target. Additionally,

since the model used for estimation is that of a point particle moving in space, we assume that the

target follows a straight line, and set 0★
8
= l★

8,q
= l★

8,W
= 0. In order to drive the transformed state

of agent 8, Z8, to its desired value Z★8 = ) (A
★
8
), we can design a gain matrix  , such that

�̄ 0 0

0 �̄ 0

0 0 �̄


−


�̄ 0 0

0 �̄ 0

0 0 �̄


 

is stable, driving Z8 to Z★8 , and therefore driving agent 8 to its desired location.
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APPENDIX C

SUPPLEMENTAL RESULTS FOR THE DISTRIBUTED KALMAN FILTER

In this appendix, we provide the proofs for Lemma 5.2.3, the derivation for the sub-optimal filtering

gains in (5.8), and show that the results in Chapter 5 hold when the order of the filtering steps is

reversed.

C.1 Proof of Lemma 5.2.3

Remark C.1.1 (From [29]) Given a set of # nonnegative scalars B8 summing up to one, a set of

# vectors G8, and a set of # matrices �8, the following holds(
#∑
8=1

B8�8G8

) (
#∑
8=1

B8�8G8

)′
≤

#∑
8=1

B8�8G8G
′
8�
′
8 .

For the noise-free case, the matrix Ξ8 (: + 1) can be explicitly written as

Ξ8 (: + 1) = ©­«(� − !8�8)
#∑
9=1

F8 9 n 9
ª®¬×©­«(� − !8�8)

#∑
9=1

F8 9 n 9
ª®¬
′

.

Using Remark C.1.1, it follows that

Ξ8 (: + 1) ≤ (� − !8�8)
#∑
9=1

F8 9Ξ 9 (:) (� − !8�8)′.

Defining Ξ(:) ∈ H=0, with Ξ8 (:) shown above, we have

Ξ(: + 1) ≤ L(Ξ(:))

with Γ8 = (� − !8�8), and the first statement can then be proved by induction.
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The second statement can be proved in a similar manner. Since the noises have zero mean and

are independent with respect to themselves and G(0), using Remark C.1.1 it can be checked that

Σ8 (: + 1) = �
{
n8 (: + 1)n8 (: + 1)′

}
≤ L8 (Σ(:)) +& + !8'8!′8 ,

with Σ(:) = (Σ1(:), . . . ,Σ# (:)) ∈ H=+ and Γ8 = (� − !8�8). The second statement can then be

proved by induction.

C.2 Sub-optimal Filtering Gains

From Lemma 5.2.3, it immediately follows that

� (:) ≤ �̄ (:)

where � (:) is defined in (5.6), and �̄ (:) is defined as

�̄ (:) =
:∑
C=0

#∑
8=1

tr(%8 (:)), (C.1)

with %8 (:) defined in (5.15). In what follows, we will show that the optimal cost �̄∗(:) is obtained

using the gains

!∗8 (:) = �E8 (%
∗(:))�′8 ('8 + �8E8 (%

∗(:))�′8 )
−1, (C.2)

with %∗(0) = Σ(0), and %∗(:) ∈ H=+ is computed using (5.15) with the gains !∗
8
(:).

Let �̄ (:) denote the cost when an arbitrary set of gains !8 (:) is used, and let %(:) ∈ H=+

denote the matrices obtained when these arbitrary gains are used in (5.15).

To show the desired result, we need to show that

�̄ (:) − �̄∗(:) =
:∑
C=0

#∑
8=1

tr(%8 (:) − %∗8 (:)) ≥ 0
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We do that by induction, and assuming %(:) ≥ %∗(:) for : ≥ 0. It can be shown through

matrix manipulation (see [30]) that

%8
∗(: + 1) − %8 (: + 1)

= (� − !∗8 �8)E8 (%
∗(:) − %(:)) (� − !∗8 �8)

′

− (!8 − !∗8 ) ('8 + �8E8 (%(:))�
′
8 ) (!8 − !

∗
8 ).

Since %(:) ≥ %∗(:) and ('8+�8E8 (%(:))�′8 ) > 0, it immediately follows that %8 (:+1) ≥ %∗
8
(:+1)

and �̄ (:) − �̄∗(:) ≥ 0. Finally, we show that these sub-optimal gains and the matrices %∗(:) can

be computed in the distributed manner as in (5.7)–(5.9). Indeed, substituting !∗
8
(:) in (5.15), and

after performing some matrix manipulation, we can write

%∗8 (: + 1) = �E8 (%∗(:))�′ +& − �E8 (%∗(:))�′8×

(�8E8 (%∗(:))�′8 + '8)
−1�8E8 (%∗(:))�′, (C.3)

which is the same expression obtained when substituting (5.7) into (5.8) and (5.9).

C.3 Reversing Order of Consensus and Filtering Steps

When the order in which the consensus and filtering steps is reversed as in [29], the noise-free

estimation error dynamics are given by

n8 (: + 1) =
#∑
9=1

F8 9
(
� − ! 9� 9

)
n 9 (:). (C.4)

First we show that the dynamics in (C.4) are asymptotically stable iff the dynamics in (5.5) are

asymptotically stable. From (C.4), the network-wide error dynamics can be expressed as

n (: + 1) = B2n (:), (C.5)

where B2 , (, ⊗ �=)diag[� − !8�8] ∈ B
(
R#=

)
. Since (, ⊗ �=) ∈ B

(
R#=

)
and diag[� −

!8�8] ∈ B
(
R#=

)
, it follows that Af (B) = Af (B2) and (5.11) is asymptotically stable iff (C.5) is

asymptotically stable.
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The notion of S-detectability inDefinition 5.2.4 implies that there exist certain gainmatrices such

that the dynamics of the upper bounds for the noise-free covariances in (5.14) are asymptotically

stable. To show that notion holds regardless of the order of the consensus and filtering steps, we

need to consider the upper bounds of the noise-free covariances for (C.5). Define the operator

J (.) ∈ B(H=) as

J8 (+) ,
#∑
9=1

F8 9Γ 9+ 9Γ
′
9 ∈ B(R

=).

The upper bound for the noise-free covariances Ξ8 (:) can be written in a compact form as

%(: + 1) = J (%(:)), %(0) = Ξ(0), (C.6)

with Γ8 = (� − !8�8).

It has been shown in [30] that Af (J) = Af (L). Therefore, the dynamics in (5.14) are asymp-

totically stable iff (C.6) is asymptotically stable, and the notion of S-detectability in Definition 5.2.4

does not depend on the order in which the steps are taken. Furthermore, it has been shown in [30]

that the coupled Riccati equations presented in [29], which are used to calculate the sub-optimal

filtering gains for this case, converge to a stabilizing solution iff the equations in (C.3) converge to

a stabilizing solution. Therefore, the necessary conditions we derive in Section 5.2 for the stability

of the distributed Kalman filter do not depend on the order of the consensus and filtering steps.
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